anaconda 安装tensorflow 2.1

该博客详细介绍了如何通过Anaconda安装Python3.7,创建并激活Tensorflow 2.1的环境,包括安装cudatoolkit和cudnn(如有GPU支持)。接着,它指导读者下载和配置PyCharm社区版,以及安装Jupyter Notebook。最后,验证了Tensorflow 2.1的正确安装。
摘要由CSDN通过智能技术生成

 

1.Anaconda python3.7版本安装

2.Tensorflow 2.1安装

3.PyCharm安装

4.Jupyter Notebook安装

Anaconda 安装

前往Anaconda官网 Python 3.7 版本,选择64-Bit Graphical Installer 下载。下载完成后按照引导安装,采用默认路径。在Advanced Installation Options步骤,勾选第一个选项框 Add Anaconda to my PATH environment variable,将Anaconda加入环境变量,静待安装成功。

Tensorflow 2.1安装

打开Anaconda Prompt(可在windows左下角搜索框中找到),创建一个TF2.1环境。输入代码 conda create -n TF2.1 python=3.7 并运行,选择y安装相应软件包。安装完成后输入 conda activate TF2.1 进入TF2.1环境。

如果你的计算机支持英伟达GPU,可安装cudatoolkit和cudnn包,若不支持则跳过这一步直接安装Tensorflow 2.1,在不支持英伟达GPU的情况下下载这两个包后续可能会报错。在安装cudatookit和cudnn前请务必更新显卡驱动。在TF2.1 环境

Anaconda是一个流行的Python数据科学平台,它包含了大量的开源库,包括TensorFlow。要在Anaconda安装TensorFlow GPU版本2.1,你可以按照以下步骤操作: 1. **确保环境激活**:首先,打开命令行终端并激活你的Anaconda环境。如果还没有创建特定于GPU的环境,可以输入 `conda create -n my_tensorflow_gpu python=3` 来创建一个新的环境。 2. **安装CUDA和cuDNN**:由于TensorFlow需要NVIDIA CUDA和cuDNN支持,你需要先下载并安装对应版本的CUDA和cuDNN。访问NVIDIA官网下载最新版本的CUDA:https://developer.nvidia.com/cuda-downloads 完成下载后,按照安装向导的指示进行安装,并将CUDA路径添加到系统环境变量中。 3. **安装cuDNN**:找到对应的cuDNN版本(通常与CUDA版本相匹配),然后从NVIDIA Developer网站下载cuDNN压缩包,解压后将其头文件和库文件添加到CUDA的include和lib目录下。 4. **安装 Anaconda Prompt**:打开Anaconda Prompt(Windows环境下)或Terminal(Mac/Linux)。 5. **安装TensorFlow-GPU**:在命令行中输入以下命令,替换`my_tensorflow_gpu`为你之前创建的环境名: ``` conda install tensorflow-gpu=2.1 cudatoolkit=version_number ``` 其中`version_number`应替换为你的CUDA的实际版本号。 6. **检查安装**:安装完成后,你可以通过运行 `python -c "import tensorflow as tf; print(tf.test.is_gpu_available())"` 来验证是否成功安装TensorFlow GPU。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值