numpy.s_

我们目前主要用到的是 slice 的类型, Python 中 slice 对象可以通过内置的 slice 函数,并设置 start, stop 及 step 参数:

>>> import numpy as np
>>> a = np.arange(10)
>>> s = slice(2,7,2)   # 从索引 2 开始到索引 7 停止,间隔为2
>>> print (a[s])
[2 4 6]

下面看 np.s_

>>> type(np.s_)
<class 'numpy.lib.index_tricks.IndexExpression'>
>>> type(np.s_[:])
<class 'slice'>
>>> 
>>> np.s_[:]
slice(None, None, None)
>>> a[slice(None, None, None)] # start,stop,step 都为 None 时, 相当于取 a 的全部数据
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

所以 np.s_[:] 也就很容易理解了.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值