极大似然估计与逻辑斯谛回归

极大似然估计

一般来说,在有一组样本X1,X2,X3,…,Xn;取值x1,x2,…,xn。
我们不知道这些样本所属总体服从的具体分布,但是我们知道他们和未知参数结合的形式——比如上述样本的概率分别为p(x1,θ1,θ2,…,θn),p(x2,θ1,θ2,…,θn),…,p(xn,θ1,θ2,…,θn).
那么现在如何对未知的参数θ1,θ2,…,θn进行估计以确定样本的函数?

那就是将这些样本对应的分布乘起来构建似然函数,再通过对似然函数求极大值,获得各个参数的取值。

这个思想不是凭空出现的,比如扔色子,我们扔了10次色子,出现了6次1点,1次2点,1次3点,1次4点,而6点一次都没有掷到。那么我们会很自然地判断这个骰子也许并不是均匀的,也许概率分布本来就倾向于1,我们扔到1的概率本来就大。会不会这个色子根本就没有6点?

通过极大似然函数来估计分布中的参数也是同样的道理,现在这些样本已经出现了——我们有理由认为这些已经出现的样本值的概率更大。因此他们的联合分布的极大值得到的参数θ1,θ2,…,θn也是最贴近总体分布中的参数的。

逻辑回归

逻辑回归虽然带有“回归”二字,但是他是实实在在的分类模型。
在这里插入图片描述
以二分类为例,对于上图这样一组数据集假设数据集线性可分,我们可不可以通过一条直线将数据集中的“×”和“⭕”完全分开?

事实上,逻辑回归就是利用现有数据对分类边界建立回归公式,比如,Z= WX+b(均为向量),以此进行分类。

sigmoid函数

首先要引入sigmoid函数概念。
Sigmoid函数是一个在生物学中常见的S型函数,也称为S型生长曲线。 [1] 在信息科学中,由于其单增以及反函数单增等性质,Sigmoid函数常被用作神经网络的激活函数,将变量映射到0,1之间。
sigmoid函数也叫Logistic函数,用于隐层神经元输出,取值范围为(0,1),它可以将一个实数映射到(0,1)的区间,可以用来做二分类。在特征相差比较复杂或是相差不是特别大时效果比较好。

g ( z   )   =   1 1 + e − z g(z\ )\ =\ \frac{1}{1+e^{-z}} g(z ) = 1+ez1

为什么提到这个函数?首先在二分类问题中(比如我们将两类分别标记为0,1),我们会很自然的想到一个阶跃函数:
在这里插入图片描述
但是这个阶跃函数不可微,因此虽然它很理想,但是却不是最好的。而将sigmoid函数的横坐标尺度放的足够大时,我们也能得到一个类似于阶跃函数的性质。
在这里插入图片描述
因此,用sigmoid函数代替阶跃函数的想法是很合理的。同时,sigmoid函数也有很好的性质,他无限逼近于0和1,是不是很像我们的概率分布函数?
当x位于sigmoid函数以右时,说明1类别出现的概率大于0.5,因此我们将他划分到正类1中去,否则,划分到另一类0中去。

逻辑回归和极大似然估计有什么关系?

1.首先看几率和对数几率的概念。
一个事件的几率是该事件发生概率与不发生概率的比值,假如事件发生的概率为p,那么该事件的几率为:
  p 1 − p \ \frac{p}{1-p}  1pp
对数几率,顾名思义,就是对几率求对数:
l o g i t ( p )   =   l o g p 1 − p logit(p)\ =\ log\frac{p}{1-p} logit(p) = log1

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值