机器学习:贝叶斯总结_3:线性回归和贝叶斯回归

线性回归的基函数模型

  • y(x,w)=w0+w1x1+......+wDxD
    y(x,w)=w0+M1j=1wjϕj(x)
    ϕj(x)

  • 基函数:多项式;高斯;sigmoid函数

  • 基函数还可以是傅里叶基函数

最大似然与最小平方

  • 误差函数=高斯噪声下的最大似然解
  • 正则项是保证矩阵非奇异

顺序学习(随机梯度下降)


正则化最小平方

  • ED(w)+λEW(w) λ

12Nn=1{tnwTΦ(xn)2}+λ2Mj=1|wj|q

  • q=1 (lasso):套索, λ

多变量的输出

偏置-方程折中

  • 最大似然估计容易导致过拟合

贝叶斯线性回归

  • 贝叶斯线性回归可以预防过拟合

贝叶斯模型的比较

  • 假设多项式曲线的拟合问题,概率分布由模型中的一个产生,但不知道是哪个,不确定性通过先验概率表达 p(Mi) .给定训练集D,

p(Mi|D)>p(Mi)p(D|Mi)

  • 先验概率表示不同模型的优先级
  • p(D|Mi)
  • 贝叶斯因子= p(D|Mi)p(D|Mj)

预测分布: p(t|x,D)=Li=1p(t|x,Mi,D)p(Mi|D)
1. 混合分布
2. 各个模型的预测加权

模型近似

待续

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值