线性回归的基函数模型
y(x,w)=w0+w1x1+......+wDxD
y(x,w)=w0+∑M−1j=1wjϕj(x)
ϕj(x):是基函数基函数:多项式;高斯;sigmoid函数
- 基函数还可以是傅里叶基函数
最大似然与最小平方
- 误差函数=高斯噪声下的最大似然解
- 正则项是保证矩阵非奇异
顺序学习(随机梯度下降)
正则化最小平方
- ED(w)+λEW(w) ; λ是正则化的系数
12∑Nn=1{tn−wTΦ(xn)2}+λ2∑Mj=1|wj|q
- q=1 (lasso):套索, λ足够大则系数为零,生成系数模型
多变量的输出
偏置-方程折中
- 最大似然估计容易导致过拟合
贝叶斯线性回归
- 贝叶斯线性回归可以预防过拟合
贝叶斯模型的比较
- 假设多项式曲线的拟合问题,概率分布由模型中的一个产生,但不知道是哪个,不确定性通过先验概率表达 p(Mi) .给定训练集D,
p(Mi|D)−>p(Mi)p(D|Mi)
- 先验概率表示不同模型的优先级
- p(D|Mi)是不同模型的优先级
- 贝叶斯因子= p(D|Mi)p(D|Mj)
预测分布:
p(t|x,D)=∑Li=1p(t|x,Mi,D)p(Mi|D)
1. 混合分布
2. 各个模型的预测加权
模型近似
待续