Use the method in Implement Trie, and modify the search function into the DFS method to check '.' character.
struct DictNode {
    char c;
    bool isword;
    unordered_map<char,DictNode*> next;
    DictNode() {
        
    }
    DictNode(char _c) {
        c=_c;
        isword=0;
    }
};
class WordDictionary {
public:
    WordDictionary() {
        root=new DictNode();
    }
    // Adds a word into the data structure.
    void addWord(string word) {
        int len=word.length();
        DictNode *curr=root;
        for(int i=0;i<len;i++)
        {
            if(curr->next.find(word[i])!=curr->next.end())
                curr=curr->next[word[i]];
            else
            {
                DictNode *temp=new DictNode(word[i]);
                curr->next.insert(make_pair(word[i],temp));
                curr=temp;
            }
        }
        curr->isword=1;
    }
    // Returns if the word is in the data structure. A word could
    // contain the dot character '.' to represent any one letter.
    bool search(string word) {
        return search_helper(word,root);
    }
    bool search_helper(string word,DictNode *p) {
        if(word.empty())
            return p->isword;
        if(word[0]=='.')
        {
            unordered_map<char,DictNode*>::iterator it;
            for(it=p->next.begin();it!=p->next.end();it++)
                if(search_helper(word.substr(1),it->second))
                    return 1;
            return 0;
        }
        if(p->next.find(word[0])==p->next.end())
            return 0;
        return search_helper(word.substr(1),p->next[word[0]]);
    }
private:
    DictNode *root;
};
// Your WordDictionary object will be instantiated and called as such:
// WordDictionary wordDictionary;
// wordDictionary.addWord("word");
// wordDictionary.search("pattern");
                  
                  
                  
                  
                            
本文介绍了一种使用字典树(Trie)的数据结构实现单词存储与模糊查询的方法。通过自定义的DictNode节点结构,实现了addWord用于添加单词,以及search用于查找包含通配符‘.’的模式匹配。此方法适用于需要高效查询和存储字符串的应用场景。
          
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					763
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            