题目链接:
http://acm.split.hdu.edu.cn/showproblem.php?pid=5072
题目大意:
给N个数,要求选出其中3个,使他们都互质,或都不互质,问有多少种选法。
解题思路:
3个数互质或不互质,即为0组或3组互质,首先可以题目转化为求3个数中1组互质或2组互质的情况。(如下图)
问题转化为,3个数中,至少1对互质且至少1对不互质的情况。
这个很好求,设A=所有与a[i]互质的数,B=所有与a[i]不互质的数
对某个数a[i],ans=A*B;且B=N-A-1;
由于N=10^5;需要用容斥原理来求。
容斥原理求互质数的原理如下:
假设n=12,m=30.
第一步:求出m的质因子:2,3,5;
第二步:(1,n)中是n的因子的倍数当然就不互质了(2,4,6,8,10)->n/2 6个,(3,6,9,12)->n/3 4个,(5,10)->n/5 2个。
如果是粗心的同学就把它们全部加起来就是:6+4+2=12个了,那你就大错特错了,里面明显出现了重复的,我们现在要处理的就是如何去掉那些重复的了!
第三步:这里就需要用到容斥原理了,公式就是:n/2+n/3+n/5-n/(2*3)-n/(2*5)-n/(3*5)+n/(2*3*5).
(奇数个因子相加,偶数个因子相减)
由于题目不是1-n的连续区间,稍微转化一下即可。
代码如下:
#include <cstdio>
#include <cstring>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
#define N 100010
#define M 2000
typedef long long LL;
bool isprime[M];
int prime[M];
LL tot=0,n;
int factor[50];
bool mark[N];
int a[N];
int s[N];
void getprime() {
for(int i=2; i<=M; i++) {
if(isprime[i]) continue;
prime[tot++]=i;
for(int j=i*i; j<=M; j+=i)
isprime[i]=true;
}
}
LL solve() {
LL ans=0;
for(int i=1; i<=n; i++) {
int m=a[i],num=0;
LL sum=0;
//求a[i]的质因子
for(int j=0; j<tot&&prime[j]*prime[j]<=m; j++) {
if(m%prime[j]==0) {
factor[num++]=prime[j];
while(m%prime[j]==0)
m/=prime[j];
}
}
if(m!=1) factor[num++]=m;
//容斥法求互质
for(int j=1; j<(1<<num); j++) {
int op=0,tmp=1;
for(int k=0; k<num; k++) {
if((1<<k)&j) {
tmp*=factor[k];
op++;
}
}
if(op&1) sum+=s[tmp];
else sum-=s[tmp];
}
if(sum==0) continue;
ans+=(sum-1)*(n-sum); //sum不互质的数包括了a[i]自身故减1
}
return ans/2;
}
int main() {
// freopen("in.txt","r",stdin);
int t;
scanf("%d",&t);
getprime();
while(t--) {
scanf("%d",&n);
memset(mark,0,sizeof(mark));
memset(s,0,sizeof(s));
for(int i=1; i<=n; i++) {
scanf("%d",&a[i]);
mark[a[i]]=true;
}
//若a[i]为质因数i的倍数,则s[i]++;(a[i]中能整除i的个数)
//不用质数表遍历,因为要考虑质数倍数的情况
for(int i=2; i<N; i++)
for(int j=i; j<N; j+=i)
if(mark[j]) s[i]++;
LL ans=n*(n-1)*(n-2)/6;
ans-=solve();
cout<<ans<<endl;
}
return 0;
}