在N件物品取出若干件放在容量为W的背包里,每件物品的体积为W1,W2……Wn(Wi为整数),与之相对应的价值为P1,P2……Pn(Pi为整数)。求背包能够容纳的最大价值。
Input第1行,2个整数,N和W中间用空格隔开。N为物品的数量,W为背包的容量。(1 <= N <= 100,1 <= W <= 10000)
第2 - N + 1行,每行2个整数,Wi和Pi,分别是物品的体积和物品的价值。(1 <= Wi, Pi <= 10000)
Output输出可以容纳的最大价值。
Sample Input
3 6
2 5
3 8
4 9
Sample Output
14
#include<cstdio>
#include<algorithm>
using namespace std;
int m[200][10100]={0};//m代表最大的价值,第一个是代表数量,第二个代表容量
int w[10100]={0},p[10100]={0};
int main(){
int N,A;
scanf("%d%d",&N,&A);
for(int i=1;i<=N;i++){
scanf("%d%d",&w[i],&p[i]);
}
for(int i=1;i<=N;i++){
for(int j=1;j<=A;j++){
if(j<w[i]) m[i][j]=m[i-1][j];//容量不够
else m[i][j]=max(m[i-1][j],m[i-1][j-w[i]]+p[i]);//容量够比较加的价值大还是不加的价值大
}
}
printf("%d\n",m[N][A]);
return 0;
}//经典的01背包问题,但也看了好久才明白