38、电子电路定理与补偿衰减器详解

电子电路定理与补偿衰减器详解

1. 补偿衰减器
1.1 未补偿衰减器

在电子电路中,简单的电阻衰减器可用于降低信号波形的幅度。然而,在实际应用中,电阻衰减器的输出端通常会连接放大器的输入电容,这就导致了杂散电容的存在,如图 B.1(a) 所示。

利用戴维南定理,可将图 B.1(a) 中的电路等效为图 B.1(b) 中的电路。其中,$R$ 表示 $R_1$ 和 $R_2$ 的并联组合,$a$ 为衰减因子。

为了防止输入信号过载,我们可以增大衰减器的输入阻抗,即让 $R_1$ 和 $R_2$ 都很大。但这样做可能会导致上升时间过长,在大多数实际应用中,这是不可接受的。

上升时间 $t_r$ 定义为电压从最终值的 10% 上升到 90% 所需的时间,它反映了电路对电压突变的响应速度。在 RC 网络中,输出电压 $v_{out}$ 达到最终值的 10% 所需的时间为 $0.1RC$,达到 90% 所需的时间为 $2.3RC$。因此,上升时间 $t_r$ 可表示为:
$t_r = 2.2\tau = 2.2RC = \frac{2.2}{2\pi f_c} = \frac{0.35}{f_c}$
其中,$f_c$ 为 3 - dB 频率,$f_c = \frac{1}{2\pi RC}$。

例如,若 $R_1 = R_2 = 1M\Omega$,放大器的输入电容 $C_2 = 15pF$,则电路的上升时间为:
$t_r = 2.2\tau = 2.2RC = 2.2\times0.5\times10^6\times15\times10^{-12} = 16.5\mu s$
这个上升时间对于实际应用来说太大了,因此是不可接受的。

1.2 补偿衰减器

为了解决未补偿衰减器上升时间过长的问题,我们可以通过在电阻 $R_1$ 上并联一个电容 $C_1$,将未补偿衰减器转换为补偿衰减器,如图 B.2(a) 所示。

将图 B.2(a) 中的电路等效为图 B.2(b) 中的电桥电路。当电桥平衡时,满足以下条件:
$R_1C_1 = R_2C_2$
在这种情况下,连接点 $x$ 和点 $y$ 的支路中没有电流流动。因此,在计算输出电压 $v_{out}$ 时,可以忽略该支路,输出电压将等于 $av_{in}$,且与频率无关。

由于关系式 $R_1C_1 = R_2C_2$ 必须精确满足,因此通常将电容 $C_1$ 设计为可变电容,并通过实验测试方波来进行最终的精确补偿调整。

当输入为幅度为 $V$ 的阶跃电压时,如果补偿不精确,输出信号会出现过补偿或欠补偿的情况,如图 B.3 所示。

2. 替代、简化和米勒定理
2.1 替代定理

替代定理指出,如果网络中某一支路的节点 $x$ 和 $y$ 之间的电压为 $v_{xy}$,通过该支路的电流为 $i_{xy}$,那么在网络中可以用一个不同的支路来替代该支路,只要替代支路的电压也为 $v_{xy}$,电流也为 $i_{xy}$。

该定理最常见的应用是用电压源或电流源替代阻抗,反之亦然。下面通过一个简单的电路和替代支路来说明替代定理,如图 C.1 所示。

对于图 C.1(a) 中的简单电阻电路,通过串并联电阻组合,我们可以得到 $v_{xy} = 6V$,$i_{xy} = 3A$。根据替代定理,跨接在端子 $x$ 和 $y$ 之间的 $2\Omega$ 电阻可以用一个 $6V$ 的电压源替代,如图 C.1(b) 所示,而网络的其余部分不受影响,该支路中的电流仍为 $3A$。

此外,还有其他可能的替代方式。例如,替代支路可以由一个 $1\Omega$ 的电阻和一个 $3V$ 的电压源组成,如图 C.1(c) 所示;或者由一个 $3\Omega$ 的电阻和一个 $3V$ 极性相反的电压源组成,如图 C.1(d) 所示。

如果图 C.1(a) 中的电压源是交流源,我们可以用一个包含电容电抗和电压源 $V’$ 的支路来替代跨接在端子 $x$ 和 $y$ 之间的 $2\Omega$ 电阻,如图 C.1(e) 所示。对于该支路,有:
$V_{xy} = jX_CI_{xy} - V’ + V’$
已知 $X_C = \frac{8}{3}\Omega$,$V_{xy} = 6V$,$I_{xy} = 3A$,代入上式可得:
$6 = j\frac{8}{3}\times3 - V’ + V’$
解得:
$V’ = 6 + j8 = 10\angle53.1^{\circ}V$

替代定理的证明基于网络的支路方程。一个包含 $B$ 条支路的网络的运行由 $2B$ 个联立方程定义。例如,对于图 C.2 所示的电桥网络,该网络有六条支路,根据欧姆定律可得:
$V_{ab} = Z_{ab}I_{ab} + V_S$
$V_{ac} = Z_{ac}I_{ac}$
$V_{ad} = Z_{ad}I_{ad}$
$V_{cb} = Z_{cb}I_{cb}$
$V_{cd} = Z_{cd}I_{cd}$
$V_{db} = Z_{db}I_{db}$
假设源电压 $V_S$ 和六个阻抗都是已知常数,我们可以得到 6 个方程,但有 12 个未知数。因此,我们还需要 6 个方程来求解每条支路的所有电压和电流。通过应用基尔霍夫电流定律(KCL)可以得到 3 个额外的方程,应用基尔霍夫电压定律(KVL)可以得到最后 3 个方程:
$I_{ab} + I_{ac} + I_{ad} = 0$
$I_{ca} + I_{cd} + I_{cb} = 0$
$I_{da} + I_{dc} + I_{db} = 0$
$V_{ab} + V_{ac} + V_{cb} = 0$
$V_{ac} + V_{cd} + V_{da} = 0$
$V_{cb} + V_{bd} + V_{dc} = 0$
现在可以联立求解这 12 个方程,得到 12 个未知数的值。

替代定理在简化包含受控源的电路时特别有用。例如,在图 C.3 所示的电流控制电压源和电压控制电流源的电路中,以及图 C.4 所示的放大器等效电路中,都可以应用替代定理进行简化。

替代定理的一个特殊情况是源吸收定理,它有两种对偶形式:电压源吸收定理和电流源吸收定理。

电压源吸收定理如图 C.5 所示,它指出,如果网络中某一支路的电流为 $i$,则该支路中的电压源可以用一个阻抗来替代。

示例 C.1 :使用电压源吸收定理简化图 C.6 所示的支路。
解决方案 :应用电压源吸收定理,得到简化后的支路如图 C.7(c) 所示。

电流源吸收定理如图 C.8 所示,它指出,如果网络中某一支路的电压为 $v$,则该支路中的电流源可以用一个导纳来替代。

示例 C.2 :使用电流源吸收定理简化图 C.9 所示的并联组合。
解决方案 :应用电流源吸收定理,得到简化后的支路如图 C.10(c) 所示。

2.2 简化定理

简化定理本质上是替代定理的扩展,适用于如图 C.11 所示的网络配置。

在图 C.11(a) 中,$N_1$ 是任何具有端电压 $v_1$ 的线性二端网络,$N_2$ 是任何其他线性二端网络。电压控制电压源的常数 $A$ 可以是任何实数,正或负。两个网络和电压源串联连接,使得电压 $v_1$ 和 $Av_1$ 在它们形成的回路中相加。

简化定理指出,如果将源 $Av_1$ 用短路替代,并且满足以下两个条件之一,则 $N_1$ 和 $N_2$ 中的所有电流保持不变:
1. 将网络 $N_1$ 中的每个电阻、电感、电容倒数和电压源都乘以 $1 + A$。
2. 将网络 $N_1$ 中的每个电阻、电感、电容倒数和电压源都除以 $1 + A$。

简化定理的证明基于回路方程的形式。显然,如果所有电阻、电感、电容倒数和电压源都乘以同一个任意因子,那么回路方程组中的每个项都将乘以相同的因子,所有回路电流保持不变。因此,如果按照定理的第一部分将 $N_1$ 中的所有参数和电压源都乘以 $1 + A$,并将 $Av_1$ 用短路替代,那么施加到 $N_2$ 的电压仍然是 $(1 + A)v_1$,$N_1$ 和 $N_2$ 中的所有电流保持不变。$N_1$ 中的所有电压都乘以因子 $1 + A$,但 $N_2$ 中的电压不变。在简化过程中,$N_1$ 和 $N_2$ 中的任何电流源都保持不变。

通过同样的推理过程,在完成上述变换后,将复合网络 $N_1 - N_2$ 中的所有电阻、电感、电容倒数和电压源都除以因子 $1 + A$,而不会改变 $N_1 - N_2$ 中的任何电流。因此,定理的第二部分得证。

当网络中的所有电流和电压都是正弦波且频率相同时,受控源的常数可以表示为复数,简化定理在这种情况下仍然成立。

简化定理的对偶形式适用于图 C.11(b) 所示的网络配置。它指出,如果将电流源 $Ai_1$ 用开路替代,并且满足以下两个条件之一,则网络中的所有电压保持不变:
1. 将网络 $N_1$ 中的所有电导、电容、电感倒数和电流源都乘以 $1 + A$。
2. 将网络 $N_1$ 中的所有电导、电容、电感倒数和电流源都除以 $1 + A$。

对偶形式的定理证明基于节点方程,与上述证明过程对偶。

在应用简化定理时,必须在应用该定理之前正确识别两个网络 $N_1$ 和 $N_2$。两个必要的要求是:
a. 被识别为网络 $N_1$ 的网络的端电压(或电流)必须是要消除的源的控制量。
b. 除了网络和受控源串联(或并联)连接的两个端子外,任何电流都不能通过其他端子进入或离开任一网络。需要注意的是,连接网络不同部分的连接不承载电流,因此在考虑条件 b 时可以忽略。

简化定理的一个有用应用是级联放大器,如图 C.12 所示。为了说明简化定理的应用,我们考虑图 C.13 所示的级联放大器的增量模型。

从图 C.13(a) 中的电路可以观察到 $v_{g1} = v_{in} + R_2i$,因此可以应用替代定理简化电路,得到图 C.13(b) 所示的等效电路。该电路已被分离为两个网络 $N_1$ 和 $N_2$,与受控源 $\mu v_3$ 串联连接,为应用简化定理做准备。该电路满足简化定理的所有条件,因此应用定理的电压源形式的第一部分,得到图 C.13(c) 所示的简化网络。

发射极跟随器如图 C.14(a) 所示,它提供了另一个在电路分析中使用简化定理的示例。

发射极跟随器的主要特性是它提供相对较低的输出电阻,能够提供相对较高的输入阻抗,并且提供电流和功率放大,但不提供电压放大。图 C.14(b) 显示了该电路在耦合电容作为短路且晶体管性能与频率无关的频率范围内有效的增量模型。使用晶体管的混合表示法,其中 $\mu = 0$。电阻 $R_1$ 表示电阻 $R_A$ 和 $R_B$ 的并联组合,电路被分离为两个网络,为应用简化定理做准备。

应用定理的电流源形式的第一部分,得到图 C.14(c) 所示的简化电路。为了简单起见,因子 $1 + \beta$ 用 $k$ 表示,在实际应用中,$k$ 基本上等于 $\beta$。将电阻 $R_S$、$R_1$ 和 $r_n$ 除以 $k$ 等效于将相应的电导乘以该因子。因此,应用简化定理得到图 C.14(c) 所示的简化电路。

电路的电流放大是由于输入信号电流在简化电路中乘以因子 $k$。从图 C.14(c) 可以清楚地看出,发射极跟随器的正向电压传输比小于 1,并且对于较大的 $k$ 值,发射极跟随器的输出电阻非常小。

如果应用定理的第二部分而不是第一部分,则得到图 C.14(d) 所示的电路。该电路便于研究输入端子处的关系,因为输入电压和电流未被修改。对于较大的 $k$ 值,发射极跟随器的输出电阻非常大。

总结

本文详细介绍了补偿衰减器和替代、简化定理在电子电路中的应用。未补偿衰减器存在上升时间过长的问题,而补偿衰减器通过在电阻上并联电容解决了这一问题。替代定理允许我们用不同的支路替代网络中的支路,只要满足电压和电流的条件。简化定理是替代定理的扩展,可用于简化包含受控源的电路。这些定理在电子电路的分析和设计中具有重要的应用价值。

表格总结

定理名称 内容 应用场景
替代定理 若网络中某支路电压为 $v_{xy}$,电流为 $i_{xy}$,可用满足相同电压和电流的支路替代 简化包含受控源的电路,如电流控制电压源、电压控制电流源和放大器等效电路
电压源吸收定理 网络中某支路电流为 $i$ 时,该支路电压源可用阻抗替代 简化电路中的电压源支路
电流源吸收定理 网络中某支路电压为 $v$ 时,该支路电流源可用导纳替代 简化电路中的电流源支路
简化定理 对于特定网络配置,满足一定条件时,可通过乘以或除以因子来简化电路,且不改变电流或电压 级联放大器、发射极跟随器等电路的简化

流程图

graph TD;
    A[开始] --> B[未补偿衰减器];
    B --> C[存在杂散电容,上升时间过长];
    C --> D[补偿衰减器];
    D --> E[并联电容,实现频率无关的衰减];
    E --> F[替代定理];
    F --> G[用不同支路替代,保持电压和电流不变];
    G --> H[源吸收定理(电压源和电流源)];
    H --> I[简化电路中的源支路];
    I --> J[简化定理];
    J --> K[通过乘以或除以因子简化包含受控源的电路];
    K --> L[应用于级联放大器和发射极跟随器];
    L --> M[结束];

电子电路定理与补偿衰减器详解(续)

3. 定理应用的深入分析
3.1 替代定理在复杂电路中的应用

替代定理在处理复杂的电子电路时,能够极大地简化分析过程。在实际的电子系统中,电路往往包含多个受控源和复杂的阻抗网络。通过替代定理,我们可以将某些复杂的支路替换为简单的电压源或电流源,从而使电路的分析更加直观。

例如,在一个包含多个晶体管和电阻的放大电路中,我们可以将某个晶体管的等效阻抗用一个电压源和电阻的组合来替代。这样,原本复杂的晶体管模型就可以简化为一个简单的线性电路,便于我们进行后续的分析和计算。

在应用替代定理时,需要注意以下几点:
1. 准确测量电压和电流 :在进行支路替代之前,必须准确测量被替代支路的电压和电流。这是因为替代定理的基础是替代前后支路的电压和电流保持不变。如果测量不准确,可能会导致替代后的电路与原电路的性能产生偏差。
2. 考虑电路的动态特性 :在某些情况下,电路的动态特性可能会影响替代定理的应用。例如,在高频电路中,电容和电感的影响不能忽略。此时,我们需要考虑替代支路的频率响应,确保替代后的电路在整个工作频率范围内都能保持与原电路相似的性能。
3. 验证替代后的电路 :在完成支路替代后,需要对替代后的电路进行验证。可以通过计算电路的关键参数,如电压增益、输入输出阻抗等,来确保替代后的电路与原电路的性能一致。如果发现性能偏差较大,需要重新检查替代过程,找出问题所在。

3.2 简化定理在多级放大器中的应用

简化定理在多级放大器的设计和分析中具有重要的应用价值。多级放大器通常由多个放大级串联组成,电路结构复杂,分析难度较大。通过简化定理,我们可以将多级放大器的电路进行简化,从而更方便地进行性能分析和优化。

以一个两级级联放大器为例,我们可以将第一级放大器看作网络 $N_1$,第二级放大器看作网络 $N_2$。假设第一级放大器的输出电压为 $v_1$,第二级放大器的输入电压为 $Av_1$($A$ 为电压增益)。根据简化定理,我们可以通过乘以或除以因子 $1 + A$ 来简化电路,同时保持电路中的电流和电压关系不变。

在应用简化定理时,需要注意以下几点:
1. 正确划分网络 :在应用简化定理之前,必须正确划分网络 $N_1$ 和 $N_2$。网络 $N_1$ 的端电压(或电流)必须是要消除的源的控制量。同时,除了网络和受控源串联(或并联)连接的两个端子外,任何电流都不能通过其他端子进入或离开任一网络。
2. 考虑受控源的特性 :受控源的特性会影响简化定理的应用。例如,受控源的增益可能会随着温度、频率等因素的变化而变化。在应用简化定理时,需要考虑这些因素的影响,确保简化后的电路在不同的工作条件下都能保持与原电路相似的性能。
3. 结合其他定理进行分析 :简化定理可以与其他电路定理,如戴维南定理、诺顿定理等结合使用,以进一步简化电路的分析过程。例如,在应用简化定理之前,可以先使用戴维南定理将电路中的某些部分等效为一个电压源和电阻的组合,然后再应用简化定理进行进一步的简化。

4. 补偿衰减器的实际应用案例
4.1 示波器探头中的补偿衰减器

示波器探头是电子测量中常用的工具,它可以将被测信号传输到示波器中进行显示和分析。为了适应不同幅度的被测信号,示波器探头通常会采用补偿衰减器来降低信号的幅度。

在示波器探头中,补偿衰减器的作用是在不引入信号失真的情况下,将被测信号的幅度降低到示波器能够处理的范围内。通过调整补偿电容 $C_1$ 的值,可以使补偿衰减器的衰减特性与频率无关,从而确保在整个工作频率范围内都能准确地测量信号。

例如,在测量高频信号时,如果补偿衰减器的补偿不准确,可能会导致信号的上升沿和下降沿出现失真,从而影响测量结果的准确性。因此,在使用示波器探头时,需要对补偿衰减器进行精确的调整,以确保测量结果的可靠性。

4.2 通信系统中的补偿衰减器

在通信系统中,补偿衰减器也有着广泛的应用。例如,在无线通信系统中,为了保证信号的传输质量,需要对信号的幅度进行精确的控制。补偿衰减器可以用于调整发射机和接收机之间的信号强度,以确保信号在传输过程中不会出现过载或衰减过大的情况。

在通信系统中,补偿衰减器的性能直接影响到信号的传输质量。因此,在设计和选择补偿衰减器时,需要考虑以下几个因素:
1. 频率响应 :补偿衰减器的频率响应必须满足通信系统的工作频率范围。在高频通信系统中,需要选择具有良好高频特性的补偿衰减器,以确保信号在整个工作频率范围内都能得到准确的衰减。
2. 衰减精度 :补偿衰减器的衰减精度直接影响到信号的幅度控制精度。在通信系统中,需要选择衰减精度高的补偿衰减器,以确保信号的幅度能够得到精确的调整。
3. 稳定性 :补偿衰减器的稳定性也是一个重要的考虑因素。在通信系统中,温度、湿度等环境因素可能会影响补偿衰减器的性能。因此,需要选择具有良好稳定性的补偿衰减器,以确保在不同的环境条件下都能保持稳定的性能。

5. 总结与展望
5.1 总结

本文详细介绍了补偿衰减器和替代、简化定理在电子电路中的应用。补偿衰减器通过在电阻上并联电容,解决了未补偿衰减器上升时间过长的问题,实现了频率无关的衰减。替代定理允许我们用不同的支路替代网络中的支路,只要满足电压和电流的条件,从而简化了包含受控源的电路。简化定理是替代定理的扩展,可用于简化包含受控源的电路,在级联放大器、发射极跟随器等电路的简化中具有重要的应用价值。

这些定理和技术在电子电路的分析和设计中具有重要的意义。通过合理应用这些定理和技术,可以降低电路的复杂度,提高电路的性能和可靠性。

5.2 展望

随着电子技术的不断发展,电子电路的复杂度和性能要求也在不断提高。未来,补偿衰减器和替代、简化定理等技术将在以下几个方面得到进一步的发展和应用:
1. 高频和高速电路 :随着通信、计算机等领域的发展,对高频和高速电路的需求越来越大。补偿衰减器和替代、简化定理等技术将在高频和高速电路的设计和分析中发挥更加重要的作用。
2. 集成电路设计 :集成电路的集成度越来越高,电路的复杂度也越来越大。替代、简化定理等技术将有助于降低集成电路设计的复杂度,提高设计效率和性能。
3. 智能电子系统 :智能电子系统的发展对电路的智能化和自适应能力提出了更高的要求。补偿衰减器和替代、简化定理等技术可以与智能算法相结合,实现电路的自适应调整和优化。

表格总结(续)

应用场景 具体应用 关键考虑因素
示波器探头 降低被测信号幅度,确保测量准确性 补偿电容调整,频率响应一致性
通信系统 调整信号强度,保证传输质量 频率响应,衰减精度,稳定性

流程图(续)

graph TD;
    N[实际应用场景] --> O[示波器探头];
    O --> P[补偿衰减器调整,确保信号不失真];
    P --> Q[准确测量高频信号];
    N --> R[通信系统];
    R --> S[补偿衰减器控制信号强度];
    S --> T[保证信号传输质量];
    Q --> U[未来发展方向];
    T --> U;
    U --> V[高频高速电路应用];
    U --> W[集成电路设计优化];
    U --> X[智能电子系统自适应调整];
根据原作 https://pan.quark.cn/s/0ed355622f0f 的源码改编 野火IM解决方案 野火IM是专业级即时通讯和实时音视频整体解决方案,由北京野火无限网络科技有限公司维护和支持。 主要特性有:私有部署安全可靠,性能强大,功能齐全,全平台支持,开源率高,部署运维简单,二次开发友好,方便第三方系统对接或者嵌入现有系统中。 详细情况请参考在线文档。 主要包括一下项目: 野火IM Vue Electron Demo,演示如何将野火IM的能力集成到Vue Electron项目。 前置说明 本项目所使用的是需要付费的,价格请参考费用详情 支持试用,具体请看试用说明 本项目默认只能连接到官方服务,购买或申请试用之后,替换,即可连到自行部署的服务 分支说明 :基于开发,是未来的开发重心 :基于开发,进入维护模式,不再开发新功能,鉴于已经终止支持且不再维护,建议客户升级到版本 环境依赖 mac系统 最新版本的Xcode nodejs v18.19.0 npm v10.2.3 python 2.7.x git npm install -g node-gyp@8.3.0 windows系统 nodejs v18.19.0 python 2.7.x git npm 6.14.15 npm install --global --vs2019 --production windows-build-tools 本步安装windows开发环境的安装内容较多,如果网络情况不好可能需要等较长时间,选择早上网络较好时安装是个好的选择 或参考手动安装 windows-build-tools进行安装 npm install -g node-gyp@8.3.0 linux系统 nodej...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值