NumPy笔记

import numpy as np

1、创建

data1 = np.array([1,2,3,4]) -- array([1,2,3,4])

data2 = np.arange(4) -- array([0,1,2,3])

data3 = np.arange(9).reshape((3,3))

2、维度

data1.shape -- 各维度

data1.dtype -- 数据类型

3、索引和切片

data1[0] -- 1

data1[1:3] -- array([2,3])

data3[0] -- array([0,1,2])

data3[0][0] -- 0

data3[:2,1:] -- array([[1,2],[4,5]])

data3[[0,1],[1,2]] -- array([[1,2],[4,5]])

4、条件判断

np.where(data3>4,4,data3) -- array([[0,1,2],[3,4,4],[4,4,4]])

5、统计计算

arr = np.random.randn(5,4)

arr.mean() -- 均值(等价于np.mean(arr))

arr.sum() -- 求和

arr.min()

arr.max()

6、排序

arr.sort()

7、唯一化

arr1 = np.array([1,2,3,1,2])

np.unique(arr1) -- array([1,2,3])

8、随机数

np.random(10)

np.random.normal(size(2,2)) -- 标准正态分布样本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值