近日python爬虫学习记录

近日需要使用python爬虫寻找一些数据,因此总结了近日的学习记录。

1. 爬虫基础流程

# 发送HTTP请求:获取网页内容(HTML/JSON)。

# 解析数据:从HTML中提取目标信息(如链接、文本、图片)。

# 存储数据:保存到文件(CSV、JSON、数据库)。

# 遵守规则:处理反爬机制(如User-Agent、限速、验证码)。

2. 相关库:

import requests as rq
# from bs4 import BeautifulSoup
# from lxml import etree
import re
import pandas as pd
import numpy as np 
import time

requests库是用来爬取网站信息的,re是正则表达式库、pandas用来将数据变成cvs文件储存、time库用来延时,防止被网站屏蔽

3. 举例:获取豆瓣电影排行榜的名字,年份,评分、评分人数

def func(filename, secquence):
        # 1.先获取请求
    headers = {"user-agent" :"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/135.0.0.0 Safari/537.36"}
    # parma = { "wd" : "python",}
    url = "https://movie.douban.com//top250" + "?start=" + str(secquence) + "&filter="
    print(url)
    r = rq.get(url, headers=headers)
    print(r.status_code, "\n")

    # 2.解析数据
    # html = etree.HTML(r.text)
    # print(html, "\n")

    # 获取豆瓣电影排行榜的名字,年份,评分、评分人数
    obj = re.compile(r'<li>.*?<div class="item">.*?<span class="title">(?P<name>.*?)</span>'
                     r'.*?<p>.*?<br>(?P<year>.*?)&nbsp'
                     r'.*?property="v:average">(?P<score>.*?)</span>'
                     r'.*?<span>(?P<nums>.*?)人评价</span>', re.S)

    res = obj.finditer(r.text)

    # 3.读取数据,保存数据
    data = []
    for ite in res:
        data.append([ite.group("name"), 
                    ite.group("year").strip(),
                    ite.group("score"),
                    ite.group("nums")])
        
        # print(ite.group("name"), 
        #     ite.group("year").strip(),
        #     ite.group("score"),
        #     ite.group("nums"))
        
    columns = ["name", "year", "score", "nums"]
    df = pd.DataFrame(columns=columns, data= data)
    df.to_csv(filename, mode='a', header=False, index=False, na_rep='N/A', encoding='utf-8-sig')


if __name__ == "__main__": 
    # arr = np.linspace
    filename = "豆瓣电影排行榜top250.csv"
    for seq in [0,25,50,75,100,125,150,175,200,225]:
        func(filename, seq)
        time.sleep(0.5)

 爬取结果:截图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值