郁闷啊,Seam配置不成功。

好郁闷啊。
刚学Seam居然遇到好多问题。
现在连环境都没有搭建起来。

根据网上的资料,我搭建的过程如下:
1、下载Java JDK 1.6 并安装。我安装在C:\program file\java下的。
2、下载Eclipse,并解压。我下载的是Eclipse SDK Version: 3.5.0,并解压到D:\eclipse

3、下载JBoss。 我下载的是JBoss 5.1.0GA。解压到D:\jboss-5.1.0.GA,并进行了配置。具体配置方法在网上很多了。这里就不说了。反正访问Http://localhost:8080/是成功的。
4、下载Ant。 我下载的是apache-ant-1.7.1。解压后到D:\ant后,在环境变量中设置了ant_home 和 path
5、下载seam。我下载的是jboss-seam-2.1.0.A1。解压到D:\jboss-seam-2.1.0。
    在build.properties文件中添加jboss.home D:\\jboss-5.1.0.GA。
6、在命令行中,启动JBoss服务器。
7、在命令行中,%seam%example/registration目录下使用 ant deploy命令部署示例程序。
8、部署完成后,访问http://localhost:8080/seam-registration/register.seam。

居然报错了:javax.servlet.ServletException: /register.xhtml: Property 'register' not found on type org.javassist.tmp.java.lang.Object_$$_javassist_1
             javax.faces.webapp.FacesServlet.service(FacesServlet.java:277)
            org.jboss.web.tomcat.filters.ReplyHeaderFilter.doFilter(ReplyHeaderFilter.java:96)

郁闷啊。

访问错误就算了。我自己建个seam工程总可以吧

9、下载wtp。我下载的是wtp-R-3.1-20090616035105。解压到D:\eclipse\otherPulgin文件夹中。
10、下载JBoss Tools。我的是JBossTools-ALL-win32-3.1.0.M2-N200907092133-H355。同样解压到D:\eclipse\otherPlugin文件夹中。
保证了9和10步骤中的目录结构为D:\eclipse\otherPulgin\eclipse

11、在D:\eclipse下创建links文件夹。并在文件夹下创建seam.link文件。文件内容为path = D:/eclipse/otherPlugins/。
12、在命令行中,进入Seam的目录。输入Seam setup 调整工作空间等配置。
13、再输入Seam new-project。会在配置好的工作空间中生成seam工程。

14、启动Eclipse。
在help->about eclipse sdk中看到有wtp和JBoss by radhat的插件。这个是不是代表插件安装成功了呢?
但是在工作空间中看不到刚才建立的seam工程。

15、window->open perspective中没有seam视图。
file->new->other。没有Seam的工程。甚至连web project都没有。

上面就是我配置的过程。完全郁闷了。
是我哪里配饰有错么?哪位大虾能教我一下啊。

1、为什么部署的应用无法访问。但是我用MyEclipse写的一个小页面可以访问到。
2、为什么Eclipse里面不能建立web项目。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值