最大二叉树
给定一个不含重复元素的整数数组。一个以此数组构建的最大二叉树定义如下:
二叉树的根是数组中的最大元素。
左子树是通过数组中最大值左边部分构造出的最大二叉树。
右子树是通过数组中最大值右边部分构造出的最大二叉树。
通过给定的数组构建最大二叉树,并且输出这个树的根节点。
示例 :
654.最大二叉树
提示:
给定的数组的大小在 [1, 1000] 之间。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def constructMaximumBinaryTree(self, nums: List[int]) -> TreeNode:
if len(nums) == 1:
return TreeNode(nums[0])
node = TreeNode(0)
# 找到数组中最大的值和对应的下标
maxValue = 0
maxValueIndex = 0
for i in range(len(nums)):
if nums[i] > maxValue:
maxValue = nums[i]
maxValueIndex = i
node.val = maxValue
# 最大值所在的下标左区间 构造左子树
if maxValueIndex > 0:
new_list = nums[:maxValueIndex]
node.left = self.constructMaximumBinaryTree(new_list)
# 最大值所在的下标右区间 构造右子树
if maxValueIndex < len(nums) - 1:
new_list = nums[maxValueIndex+1:]
node.right = self.constructMaximumBinaryTree(new_list)
return node
class Solution:
def constructMaximumBinaryTree(self, nums: List[int]) -> TreeNode:
if not nums:
return None
max_val = max(nums)
max_index = nums.index(max_val)
node = TreeNode(max_val)
node.left = self.constructMaximumBinaryTree(nums[:max_index])
node.right = self.constructMaximumBinaryTree(nums[max_index+1:])
return node
617.合并二叉树
给定两个二叉树,想象当你将它们中的一个覆盖到另一个上时,两个二叉树的一些节点便会重叠。
你需要将他们合并为一个新的二叉树。合并的规则是如果两个节点重叠,那么将他们的值相加作为节点合并后的新值,否则不为 NULL 的节点将直接作为新二叉树的节点。
示例 1:
注意: 合并必须从两个树的根节点开始。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def mergeTrees(self, root1: TreeNode, root2: TreeNode) -> TreeNode:
# 递归终止条件:
# 但凡有一个节点为空, 就立刻返回另外一个. 如果另外一个也为None就直接返回None.
if not root1:
return root2
if not root2:
return root1
# 上面的递归终止条件保证了代码执行到这里root1, root2都非空.
root1.val += root2.val # 中
root1.left = self.mergeTrees(root1.left, root2.left) #左
root1.right = self.mergeTrees(root1.right, root2.right) # 右
return root1 # ⚠️ 注意: 本题我们重复使用了题目给出的节点而不是创建新节点. 节省时间, 空间.
700.二叉搜索树中的搜索
给定二叉搜索树(BST)的根节点和一个值。 你需要在BST中找到节点值等于给定值的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 NULL。
例如,
在上述示例中,如果要找的值是 5,但因为没有节点值为 5,我们应该返回 NULL。
二叉搜索树是一个有序树:
若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
它的左、右子树也分别为二叉搜索树 这就决定了,二叉搜索树,递归遍历和迭代遍历和普通二叉树都不一样。
方法一) 递归
class Solution:
def searchBST(self, root: TreeNode, val: int) -> TreeNode:
# 为什么要有返回值:
# 因为搜索到目标节点就要立即return,
# 这样才是找到节点就返回(搜索某一条边),如果不加return,就是遍历整棵树了。
if not root or root.val == val:
return root
if root.val > val:
return self.searchBST(root.left, val)
if root.val < val:
return self.searchBST(root.right, val)
(方法二)迭代
class Solution:
def searchBST(self, root: TreeNode, val: int) -> TreeNode:
while root:
if val < root.val: root = root.left
elif val > root.val: root = root.right
else: return root
return None
98.验证二叉搜索树
力扣题目链接(opens new window)
给定一个二叉树,判断其是否是一个有效的二叉搜索树。
假设一个二叉搜索树具有如下特征:
节点的左子树只包含小于当前节点的数。
节点的右子树只包含大于当前节点的数。
所有左子树和右子树自身必须也是二叉搜索树。
要知道中序遍历下,输出的二叉搜索树节点的数值是有序序列。
有了这个特性,验证二叉搜索树,就相当于变成了判断一个序列是不是递增的了。
#递归法
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def __init__(self):
self.vec = []
def traversal(self, root):
if root is None:
return
self.traversal(root.left)
self.vec.append(root.val) # 将二叉搜索树转换为有序数组
self.traversal(root.right)
def isValidBST(self, root):
self.vec = [] # 清空数组
self.traversal(root)
for i in range(1, len(self.vec)):
# 注意要小于等于,搜索树里不能有相同元素
if self.vec[i] <= self.vec[i - 1]:
return False
return True