vue3中使用mathjax、markdown-it解析ai大模型返回

‌当前AI的火爆程度极高,尤其在某些新兴应用领域,如DeepSeek模型的爆火,展示了AI技术的广泛影响力和用户的高度关注‌。

使用vue3解析ai大模型返回变得尤为重要,尤其是涉及到解析数学题目之类的,最出名的无疑是mathjax,同时还需要解析markdown格式,碰到一些情况,特此写一个组件,方便使用:

  1. 解析前页面RT 
  2. 解析后页面RT  
  3. 上代码
    1. npm install mathjax@3 markdown-it
    2. 将node_modules\mathjax\es5\tex-svg-full.js 文件复制到/public目录下,不建议CDN

    3. 在index.html文件加入以下内容,在<script type="module" src="/src/main.ts"></script>之前

      <script>
            window.MathJax = {
          tex: {
              inlineMath: [
                  ["$", "$"],
                  ["\\(", "\\)"],
              ], // 行内公式选择符
              displayMath: [
                  ["$$", "$$"],
                  ["\\[", "\\]"],
              ] // 段内公式选择符
          },
          startup: {
              ready() {
                  window.MathJax.startup.defaultReady() ;
              }
          }
      } ;
          </script>
          <script id="MathJax-script" async src="./tex-svg-full.js"></script>
    4. 新建组件 MyMarkMath.vue,如下:

      <template>
      
        <div>
      
          <br/>
      
          <div ref="mathjaxContainer" style="white-space: pre-wrap;
      
              word-break: break-all" v-html="myHtml"  :class="lineClamp==4?'myline4':''">
      
          </div>
      
          <el-button style="float: right;" type="info" @click="lineClamp=lineClamp==4?'':4" plain>{
            
            { lineClamp==4?"显示全文":"显示4行" }}</el-button><br/>
      
        </div>
      
      
      
        </template>
      
      <script lang="ts" setup>
      
      //@ts-ignore
      
      import MarkdownIt from 'markdown-it';
      
      import { nextTick, onMounted, ref } from 'vue';
      
      const props = defineProps({
      
      text: {
      
          type: String,
      
          default: '',
      
          require: true
      
      }
      
      })
      
      const myHtml=ref(props.text)
      
      const mathjaxContainer = ref();
      
      const lineClamp=ref(4)
      
      const mdi = new MarkdownIt({
      
          html: true,
      
          linkify: true,
      
          });
      
      
      
      const TypeSet = async function (elements:any=undefined) {
      
            if (!('MathJax' in window)) {
      
                return
      
            }
      
            const myMathJax:any=window.MathJax;
      
            myMathJax.startup.promise = myMathJax.startup.promise
      
                .then(() => {
      
                    return myMathJax.typesetPromise(elements)
      
                })
      
                .catch((err:any) => console.log('Typeset failed: ' + err.message))
      
            return myMathJax.startup.promise
      
        }
      
      // 处理并渲染Markdown内容
      
         
      
        onMounted(() => {
      
          nextTick(async () => {
      
             await TypeSet()
      
              myHtml.value=  mdi.render(mathjaxContainer.value.innerHTML);
      
          });
      
        });
      
        </script>
      
      
      
        <style scoped>
      
       .myline4 {
      
          display: -webkit-box;
      
          -webkit-box-orient: vertical;
      
          -webkit-line-clamp: 4;
      
          line-clamp: 4;
      
          overflow: hidden;
      
          text-overflow: ellipsis;
      
          }
      
        </style>

  4. 使用方法

    
            <MyMarkMath text="这里是ai智能体返回内容"></MyMarkMath>
### 三、研究内容   #### (一)主要内容   本研究围绕“多学科精准辅导”核心目标,设计并实现基于Django框架与GPT-4大模型的智能辅导系统,具体内容包括:   1. **混合架构系统设计**      - 构建“前端交互层(Web界面)-逻辑处理层(Django)-大模型服务层(GPT-4)”三层架构,实现高并发访问与模块解耦;      - 设计学科适配模块,通过**学科特征提取器**自动区分数学公式(如$$ \frac{d}{dx}\sin(x) = \cos(x) $$)、英语语法树(S→NP+VP结构)和语文语义关联需求。     2. **多学科问题解答引擎**      - 数学领域:开发公式动态解析器,支持代数运算(如方程$ax^2+bx+c=0$求根)、几何证明等题型标准化处理;      - 英语领域:构建语法纠错模型,结合规则引擎(如虚拟语气if从句动词变形规则)约束GPT-4生成结果;      - 语文领域:设计语义关联算法,实现古诗词意象分析(如“明月”与思乡主题映射)、现代文阅读理解要点提取。     3. **错题管理与个性化推送**      - 建立错题分类数据库,按**学科-知识点-错误类型**三级标签(如数学/三角函数/周期计算错误)存储错题;      - 基于遗忘曲线设计推送策略,定期生成变式题(如修改三角函数参数$y=A\sin(kx+\phi)$中的$k$值)强化薄弱点。     4. **性能与准确性优化**      - 通过负载均衡(Nginx部署)与缓存机制(Redis)保障并发访问响应速度;      - 结合规则校验(如数学答案代入验证$f(x)=0$)与人工标注数据集微调GPT-4,确保解答准确率≥85%。   对上述内容进行统合,字数为700-800字,每一个小标题下尽量用1-2个小段落,少分段
03-23
<think>好的,我现在需要处理用户关于“研究内容”部分的扩展请求。用户已经提供了详细的结构,要求将内容扩展到700-800字,每个小标题下用1-2个段落,少分段。同时,用户之前的历史对话显示,他们需要严格遵守格式和LaTeX规范,且内容要结构清晰,真实可靠。 首先,我需要通读用户提供的现有内容,理解每个子部分的核心要点。用户的研究内容分为四个主要部分:混合架构系统设计、多学科问题解答引擎、错题管理与个性化推送、性能与准确性优化。每个部分下又有具体的小点,需要进一步展开。 接下来,我要考虑如何扩展每个部分。例如,在“混合架构系统设计”中,用户提到了三层架构和学科适配模块。我需要详细解释每一层的功能,如何实现模块解耦,以及学科特征提取器的具体工作方式。可能加入技术细节,比如Django框架的优势,或者如何利用LaTeX解析数学公式。 对于“多学科问题解答引擎”,需要分别展开数学、英语、语文三个领域的具体技术实现。比如数学部分的动态解析器如何支持不同题型,英语语法纠错模型如何结合规则引擎,语文的语义关联算法具体如何操作。这里可能需要举例说明,如具体的方程或语法结构,以增强可信度。 错题管理部分需要详细说明数据库的结构和推送策略。三级标签如何组织,遗忘曲线的应用,以及变式题生成的例子。这部分可以加入数据存储的具体技术,如使用MySQL,以及变式题参数调整的实际案例。 性能和准确性优化部分需要讨论负载均衡和缓存机制的具体实施,比如Nginx和Redis的配置,以及如何通过规则校验和微调GPT-4来提高准确率。可能需要提到具体的测试工具或方法,如JMeter压力测试,或者准确率计算公式。 同时,需要确保整个内容符合格式要求:使用正确的中文标点,LaTeX公式用$$...$$或$...$,避免使用Markdown,结构清晰,每个小标题下保持1-2个段落。还要注意不要重复内容,保持逻辑连贯。 在写作过程中,可能会遇到如何平衡技术细节与可读性的问题。需要确保内容专业但不晦涩,举例恰当,避免过于冗长。同时,检查LaTeX语法的正确性,比如积分符号、方程格式是否正确,变量是否斜体等。 最后,统合所有部分,确保总字数在700-800字之间,每个部分的信息完整,符合用户的具体要求。可能需要多次调整段落长度,合并句子,减少分段,同时保持内容的流畅和逻辑性。</think>### 三、研究内容 #### (一)主要内容 本研究以“多学科精准辅导”为核心目标,设计并实现了一套融合Django框架与GPT-4大模型的智能辅导系统,涵盖系统架构设计、学科问题解析、个性化学习管理三大维度,具体内容如下: --- #### 1. 混合架构系统设计 系统采用**分层解耦架构**实现高效协作与可扩展性。 - **前端交互层**基于Vue.js构建响应式Web界面,支持多端自适应访问(PC/移动设备),重点优化数学公式渲染性能(通过MathJax动态解析$$ \frac{\partial u}{\partial t} = \alpha \nabla^2 u $$类偏微分方程); - **逻辑处理层**依托Django框架实现业务路由与学科适配,通过中间件拦截请求并调用学科特征提取器: - 数学领域识别LaTeX公式结构(如积分式$\int_{a}^{b} f(x)dx$提取积分变量与上下限); - 英语领域解析句子成分树(如S→NP+VP结构检测主谓缺失错误); - 语文领域提取关键词共现网络(如《荷塘月色》中“月光”“荷叶”构建意境关联); - **大模型服务层**通过API网关调度GPT-4,采用异步通信(Celery+RabbitMQ)降低响应延迟,确保高并发场景下服务稳定性。 --- #### 2. 多学科问题解答引擎 针对不同学科特性开发专用处理模块。 - **数学引擎**实现题型标准化与动态解析- 代数模块支持方程求解(如一元二次方程$ax^2+bx+c=0$自动推导求根公式$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$),并通过SymPy库验证解的正确性; - 几何模块集成动态作图功能,基于用户输入的命题(如“证明勾股定理”)生成交互式证明流程图; - **英语引擎**结合规则约束与语义理解: - 语法纠错模型利用Stanford Parser检测主谓一致、时态错误(如“She go to school”触发主谓不一致告警),并生成修正建议; - 虚拟语气处理模块内置变形规则库(如“If I were you”强制要求be动词使用were形态); - **语文引擎**强化语义关联与深度分析: - 古诗词模块构建意象知识图谱(如“明月→思乡”“杨柳→离别”),支持《静夜思》等作品的意象解读; - 现代文模块采用BERT模型提取中心思想,结合TextRank算法生成阅读理解关键点摘要。 --- #### 3. 错题管理与个性化推送 基于学习行为数据构建自适应辅导闭环。 - **错题数据库**采用MySQL设计多级分类存储结构: - 一级标签按学科划分(数学/英语/语文); - 二级标签关联知识点(如数学/导数/极值计算); - 三级标签细化错误类型(如公式误用、逻辑跳步); - **智能推送系统**融合记忆规律与学科特征: - 基于艾宾浩斯遗忘曲线设定复习周期(如首次错题后1天、7天、30天推送); - 数学变式题动态生成器调整题目参数(如将三角函数$y=2\sin(3x+\pi/4)$的振幅A改为3,检测周期变化理解度); - 英语推送内容按错误频率加权(如虚拟语气错误率高于时态错误时,优先推送虚拟语气专项练习)。 --- #### 4. 性能与准确性优化 通过工程优化与算法迭代提升系统可靠性。 - **性能优化**采用负载均衡与缓存策略: - Nginx配置加权轮询策略分发请求,避免单节点过载; - Redis缓存高频访问数据(如常用公式$E=mc^2$、英语语法规则库),降低数据库查询压力; - **准确性保障**建立多级校验机制: - 数学答案校验器自动代入验证(如方程解需满足$f(x)=0$); - 人工标注数据集(数学500题/英语300句/语文200篇)用于微调GPT-4,约束其输出符合教学规范; - 定义量化指标$$ \text{准确率} = \frac{\text{正确题数}}{\text{总题数}} \times 100\% $$,通过A/B测试确保各学科准确率≥85%。 --- **创新性体现**: 1. **多模态融合架构**:将LaTeX公式解析、句法树分析与语义图谱技术整合,突破单一学科处理瓶颈; 2. **动态适应性**:基于错题特征与用户画像实时调整推送策略,实现“千人千面”的个性化辅导; 3. **轻量化部署**:采用Django+MySQL技术栈降低运维门槛,支持中小规模教育机构快速部署应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值