mingkoukou
码龄17年
关注
提问 私信
  • 博客:48,780
    48,780
    总访问量
  • 14
    原创
  • 614,559
    排名
  • 17
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:天津市
  • 加入CSDN时间: 2008-03-14
博客简介:

学习笔记

博客描述:
小白的学习笔记
查看详细资料
个人成就
  • 获得63次点赞
  • 内容获得4次评论
  • 获得253次收藏
创作历程
  • 1篇
    2023年
  • 13篇
    2018年
成就勋章
TA的专栏
  • Flask
    1篇
  • Pandas_规整数据_轴向连接
    2篇
  • Pandas_规整数据_合并数据
    2篇
  • Pandas_规整数据_组合数据
    1篇
  • Pandas_规整数据_转换数据
    4篇
  • Pandas_聚合数据
    4篇
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

174人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Flask+python3+阿里云平台发送短信 最简单最笨的那种

python 阿里云 短信
原创
发布博客 2023.05.26 ·
423 阅读 ·
1 点赞 ·
2 评论 ·
2 收藏

Pandas_聚合数据_groupby()1

聚合数据 分组运算DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, observed=False, **kwargs) 1.by 字符串 or 字符串列表(内部分组键)df.groupby('subject').mean()d...
原创
发布博客 2018.11.30 ·
676 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

Pandas_聚合数据_pivot_table()

聚合数据pivot_table()将列数据设定为行索引和列索引,并可以聚合运算。(我总觉得,pivot_table 就是把分组key放到index和columns进行二维分组)(pivot() 只能将列数据转换成行索引和列索引,不能运算,而且如果某项数据出现重复时,将无法执行。)pivot_table() 既是顶级类函数,也是实例对象函数。“一般的经验法则是,一旦使用多个“...
原创
发布博客 2018.11.21 ·
21744 阅读 ·
28 点赞 ·
1 评论 ·
130 收藏

Pandas_聚合数据_crosstab()_1

pd.crosstab()用于计算分组的频率,算是一种特殊的pivot_table()是顶级类函数pandas.crosstab(index, columns, values=None, rownames=None, colnames=None, aggfunc=None,margins=False, margins_name='All', dropna=True, normalize...
原创
发布博客 2018.11.21 ·
2462 阅读 ·
2 点赞 ·
0 评论 ·
23 收藏

Pandas_聚合数据_crosstab()_2

pd.crosstab()用于计算分组的频率,算是一种特殊的pivot_table()是顶级类函数pandas.crosstab(index, columns, values=None, rownames=None, colnames=None, aggfunc=None, margins=False, margins_name='All', dropna=True, normaliz...
原创
发布博客 2018.11.21 ·
1151 阅读 ·
2 点赞 ·
0 评论 ·
10 收藏

Pandas_规整数据_组合数据_combine_first

组合数据combine_first() 是一个实例方法,用一个DataFrame的数据补充到另一个DataFrame,生成一个新的对象。a.combine_first(b)  用b的数据填补a的缺失值b.combine_first(a)  用a的数据填补b的缺失值df1 one two0 11.0 NaN1 12.0 22.02 NaN 23.03 13.0 NaN4...
原创
发布博客 2018.11.21 ·
504 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

Pandas_规整数据_转换数据_melt()

转换数据df.melt() 是 df.pivot() 逆转操作函数将列名转换为列数据(columns name → column values),重构DataFrame如果说 df.pivot() 将长数据集转换成宽数据集,df.melt() 则是将宽数据集变成长数据集melt() 既是顶级类函数也是实例对象函数,作为类函数出现时,需要指明 DataFrame 的名称参数 ...
原创
发布博客 2018.11.21 ·
17139 阅读 ·
26 点赞 ·
0 评论 ·
81 收藏

Pandas_规整数据_转换数据_pivot()

转换数据将 column values 设置为 index / columns,重构DataFrame(将列数据设定为行索引和列索引(改变 DataFrame 的结构,不做任何运算))df.pivot() 将长数据集转换成宽数据集df.pivot(index=None, columns=None,values=None)参数 类型 说明 index ...
原创
发布博客 2018.11.21 ·
2468 阅读 ·
3 点赞 ·
1 评论 ·
12 收藏

Pandas_规整数据_转换数据_stack() unstack()1

转换数据df.stack() 列索引→行索引    df.unstack() 行索引→列索引参数 类型 说明 level int string list -1 默认值 默认将最内层的列索引转换为最内层的行索引 dropna bool True 默认值 数据转换后,如果一行数据...
原创
发布博客 2018.11.21 ·
422 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Pandas_规整数据_转换数据_stack() unstack()2

转换数据df.stack() 列索引→行索引    df.unstack() 行索引→列索引参数 类型 说明 level int string list -1 默认值 默认将最内层的行索引转换为最内层的列索引 fill_value value replace NaN with this va...
原创
发布博客 2018.11.21 ·
634 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

Pandas_规整数据_轴向连接_concat

轴向连接pd.concat()是顶级的类方法,实例对象没有该方法。参数 类型 说明 axis 0 1 0 默认值 join outer inner outer 默认值 inner 交集,outer 并集 axis=0,依据columns取并集或交集(取交集时,columns相同的数据保留) axis=1,依据index取交...
原创
发布博客 2018.11.21 ·
326 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Pandas_规整数据_轴向连接_append

轴向连接append()是一个实例方法,实现axis=0轴方向的连接,不在axis=1轴方向连接参数 类型 说明 ignore_index bool False 默认值 True 忽略0轴方向的索引,建立新的整数索引( 0,1...n-1 ) df1 one two threea 110 120 130c 210 220 23...
原创
发布博客 2018.11.21 ·
209 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Pandas_规整数据_合并数据_merge

合并数据pd.merge()是顶级的类方法,实例对象没有该方法,此函数是针对DataFrame对象。与pd.concat()的最大区别,pd.concat()依据index/columns在轴方向罗列,pd.merge()依据具体数据连接。参数 类型 说明 left/right DataFrame 进行合并的两个DataFrame对象 how ...
原创
发布博客 2018.11.21 ·
384 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Pandas_规整数据_合并数据_join

合并数据join()是实例对象方法pd.merge()是顶级类方法join()默认以index作为key,也可以通过参数on指定其他列为key。参数 类型 说明 other DataFrame List of DataFrame join函数可以多个DataFrame合并 ldf.join([rdf,rdf1,rd...
原创
发布博客 2018.11.21 ·
222 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏