前言:由于计算机运算是有模运算,数据范围的表示有一定限制,如整型int(C++中int 与long相同)表达范围是(-2^31~2^31-1),unsigned long(无符号整数)是(0~2^32-1),都约为几十亿.如果采用实数型,则能保存最大的double只能提供15~16位的有效数字,即只能精确表达数百万亿的数.因此,在计算位数超过十几位的数时,不能采用现有类型,只能自己编程计算.
高精度计算通用方法:高精度计算时一般用一个数组来存储一个数,数组的一个元素对应于数的一位(当然,在以后的学习中为了加快计算速度,也可用数组的一个元素表示数的多位数字,暂时不讲),表示时,由于数计算时可能要进位,因此为了方便,将数由低位到高位依次存在数组下标对应由低到高位置上,另外,我们申请数组大小时,一般考虑了最大的情况,在很多情况下,表示有富余,即高位有很多0,可能造成无效的运算和判断,因此,我们一般将数组的第0个下标对应位置来存储该数的位数.如数:3485(三千四百八十五),表达在数组a[10]上情况是:
下标 0
内容 4
说明:位数
具体在计算加减乘除时方法就是小学时采用的列竖式方法.
注:高精度计算时一般用正数,对于负数,通过处理符号位的修正.
一.高精度数的存储
1.如对数采用的字符串输入
#include <iostream>
#include <cstring>
using namespace std;
const int N=100;//最多100位
int main()
{
int a[N+1],i;
string s1;
cin>>s1;//数s1
memset(a,0,sizeof(a)); //数组清0
a[0]=s1.length(); //位数
for(i=1;i<=a[0];i++) a[i]=s1[a[0]-i]-'0';//将字符转为数字并倒序存储.
return 0;
}
2.直接读入
#include <iostream>
using namespace std;
const int N=100;//最多100位
int main()
{
int a[N+1],i,s,key;
cin>>key;//数key
memset(a,0,sizeof(a)); //数组清0
i=0;//第0位
while(key)
{
}
a[0]=i; //共i位数
return 0;
}
3.直接初始化(用a[]存储)
初始化为0: memset(a,0,sizeof(a));
初始化为1: memset(a,0,sizeof(a));a[0]=1;a[1]=1;
以下程序都只写函数,不写完整程序,所有高精度数存储都满足上述约定。
二.高精度数比较
int compare(int a[],int b[])
{int i;
if (a[0]>b[0]) return 1;//a的位数大于b则a比b大
if (a[0]<b[0]) return -1;//a的位数小于b则a比b小
for(i=a[0];i>0;i--)
return 0;//各位都相等则两数相等。
}
三、高精度加法
int plus(int a[],int b[]) //计算a=a+b
{int i,k;
k=a[0]>b[0]?a[0]:b[0]; //k是a和b中位数最大的一个的位数
for(i=1;i<=k;i++)
if(a[k+1]>0) a[0]=k+1;
return 0;
}
四、高精度减法
int gminus(int a[],int b[]);//计算a=a-b,返加符号位0:正数 1:负数
{ int flag,i
if (falg==0)//相等
if(flag==1) //大于
if (flag==-1)//小于
}
五、高精度乘法1(高精度乘单精度数,单精度数是指通常的整型数)
int multi1(int a[],long
{int i,k;
if (key==0){memset(a,0,sizeof(a));a[0]=1;return 0;} //单独处理key=0
for(i=1;i<=a[0];i++)a[i]=a[i]*key;//先每位乘起来
for(i=1;i<=a[0];i++){a[i+1]+=a[i]/10;a[i]%=10;} //进位
//注意上一语句退出时i=a[0]+1
while(a[i]>0) {a[i+1]=a[i]/10;a[i]=a[i]%10;i++;a[0]++];}
return 0;
}
C++高精度模板(2)
*
直接copy过来的……
LANG: C++
TASK: 高精度模板
*/
//高精度模板,注意本模板并没有考虑中间会出现负数的情况
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <assert.h>
#include <ctype.h>
#include <map>
#include <string>
#include <set>
#include <bitset>
#include <utility>
#include <algorithm>
#include <vector>
#include <stack>
#include <queue>
#include <iostream>
#include <fstream>
#include <list>
using namespace std;
const int MAXL = 500;
struct BigNum
{
int num[MAXL];
int len;
};
//高精度比较 a > b return 1, a == b return 0; a < b return -1;
int Comp(BigNum &a, BigNum &b)
{
int i;
if(a.len != b.len) return (a.len > b.len) ? 1 : -1;
for(i = a.len-1; i >= 0; i--)
if(a.num[i] != b.num[i]) return (a.num[i] > b.num[i]) ? 1 : -1;
return 0;
}
//高精度加法
BigNum Add(BigNum &a, BigNum &b)
{
BigNum c;
int i, len;
len = (a.len > b.len) ? a.len : b.len;
memset(c.num, 0, sizeof(c.num));
for(i = 0; i < len; i++)
{
c.num[i] += (a.num[i]+b.num[i]);
if(c.num[i] >= 10)
{
c.num[i+1]++;
c.num[i] -= 10;
}
}
if(c.num[len]) len++;
c.len = len;
return c;
}
//高精度减法,保证a >= b
BigNum Sub(BigNum &a, BigNum &b)
{
BigNum c;
int i, len;
len = (a.len > b.len) ? a.len : b.len;
memset(c.num, 0, sizeof(c.num));
for(i = 0; i < len; i++)
{
c.num[i] += (a.num[i]-b.num[i]);
if(c.num[i] < 0)
{
c.num[i] += 10;
c.num[i+1]--;
}
}
while(c.num[len] == 0 && len > 1) len--;
c.len = len;
return c;
}
//高精度乘以低精度,当b很大时可能会发生溢出int范围,具体情况具体分析
//如果b很大可以考虑把b看成高精度
BigNum Mul1(BigNum &a, int &b)
{
BigNum c;
int i, len;
len = a.len;
memset(c.num, 0, sizeof(c.num));
//乘以0,直接返回0
if(b == 0)
{
c.len = 1;
return c;
}
for(i = 0; i < len; i++)
{
c.num[i] += (a.num[i]*b);
if(c.num[i] >= 10)
{
c.num[i+1] = c.num[i]/10;
c.num[i] %= 10;
}
}
while(c.num[len] > 0)
{
c.num[len+1] = c.num[len]/10;
c.num[len++] %= 10;
}
c.len = len;
return c;
}
//高精度乘以高精度,注意要及时进位,否则肯能会引起溢出,但这样会增加算法的复杂度,
//如果确定不会发生溢出, 可以将里面的while改成if
BigNum Mul2(BigNum &a, BigNum &b)
{
int i, j, len = 0;
BigNum c;
memset(c.num, 0, sizeof(c.num));
for(i = 0; i < a.len; i++)
for(j = 0; j < b.len; j++)
{
c.num[i+j] += (a.num[i]*b.num[j]);
if(c.num[i+j] >= 10)
{
c.num[i+j+1] += c.num[i+j]/10;
c.num[i+j] %= 10;
}
}
len = a.len+b.len-1;
while(c.num[len-1] == 0 && len > 1) len--;
if(c.num[len]) len++;
c.len = len;
return c;
}
//高精度除以低精度,除的结果为c, 余数为f
void Div1(BigNum &a, int &b, BigNum &c, int &f)
{
int i, len = a.len;
memset(c.num, 0, sizeof(c.num));
f = 0;
for(i = a.len-1; i >= 0; i--)
{
f = f*10+a.num[i];
c.num[i] = f/b;
f %= b;
}
while(len > 1 && c.num[len-1] == 0) len--;
c.len = len;
}
//高精度*10
void Mul10(BigNum &a)
{
int i, len = a.len;
for(i = len; i >= 1; i--)
a.num[i] = a.num[i-1];
a.num[i] = 0;
len++;
//if a == 0
while(len > 1 && a.num[len-1] == 0) len--;
}
//高精度除以高精度,除的结果为c,余数为f
void Div2(BigNum &a, BigNum &b, BigNum &c, BigNum &f)
{
int i, len = a.len;
memset(c.num, 0, sizeof(c.num));
memset(f.num, 0, sizeof(f.num));
f.len = 1;
for(i = len-1;i >= 0;i--)
{
Mul10(f);
//余数每次乘10
f.num[0] = a.num[i];
//然后余数加上下一位
///利用减法替换除法
while(Comp(f, b) >= 0)
{
f = Sub(f, b);
c.num[i]++;
}
}
while(len > 1 && c.num[len-1] == 0)len--;
c.len = len;
}
void print(BigNum &a)
{
int i;
for(i = a.len-1; i >= 0; i--)
printf("%d", a.num[i]);
puts("");
}
//将字符串转为大数存在BigNum结构体里面
BigNum ToNum(char *s)
{
int i, j;
BigNum a;
a.len = strlen(s);
for(i = 0, j = a.len-1; s[i] != '\0'; i++, j--)
a.num[i] = s[j]-'0';
return a;
}
void Init(BigNum &a, char *s, int &tag)
{
int i = 0, j = strlen(s);
if(s[0] == '-') {j--; i++; tag *= -1;}
a.len = j;
for(; s[i] != '\0'; i++, j--)
a.num[j-1] = s[i]-'0';
//print(a);
}
int main()
{
BigNum a, b;
char s1[100], s2[100];
while(scanf("%s %s", s1, s2) != EOF)
{
int tag = 1;
Init(a, s1, tag);
Init(b, s2, tag);
a = Mul2(a, b);
if(a.len == 1 && a.num[0] == 0)
{
puts("0");
}
else
{
if(tag < 0) putchar('-');
print(a);
}
}
return 0;
}