01背包问题

http://www.cnblogs.com/jiangjun/archive/2012/05/08/2489590.html

1.递归思想

0- 1 背包问题如果采用递归算法来描述则非常清楚明白, 它的算法根本思想是假设用布尔函数
knap( s, n) 表示n 件物品放入可容质量为s 的背包中是否有解( 当knap 函数的值为真时

说明问题有解,其值为假时无解) . 我们可以通过输入s 和n 的值, 根据它们的值可分为以下几种情况讨论:

( 1) 当s= 0时可知问题有解, 即函数knap( s, n) 的值为true; ( 2) 当s< 0 时这时不可能,

所以函数值为false; ( 3) 当输入的s> 0 且n< 1 时即总物品的件数不足1, 这时函数值为false,

只有s> 0 且n \1 时才符合实际情况,这时又分为两种情况: ( 1) 选择的一组物体中不包括Wn

则knap( s, n) 的解就是knap( s, n- 1) 的解. ( 2) 选择的一组物体中包括Wn 则knap( s, n) 的解

就是knap( s- Wn, n- 1) 的解. 这样一组Wn 的值就是问题的最佳解. 这样就将规模为n 的问题转化为

规模为n- 1 的问题. 综上所述0- 1 背包问题的递归函数定义为:
knap( s, n) =∕true, s= 0
             ︳false, s< 0
             ︳false, s> 0 且n< 1
              \knap( s, n- 1) 或knap( s- Wn, n- 1) , s> 0 且n>= 1
采用此法求解0- 1 背包问题的时间复杂度为O( n) . 上述算法对于所有物品中的某几件恰能装满背包
时能准确求出最佳解. 但一般情况是对于某一些物品无论怎么装都不能装满背包, 必须要按背包的最大
容量来装. 如物品件数为4, 其质量分别为: 10, 2, 5, 4, 背包的容量为20, 则这四件物品无论怎么放都不
能恰好装满背包, 但应能最大限度装, 即必须装下10, 5, 4 这三件物品, 这样就能得到最大质量19. 对于
这种装不满的背包它的解决办法是这样的: 按所有物品的组合质量最大的方法装背包, 如果还装不满,
则我们可以考虑剩余空间能否装下所有物品中最小的那件, 如果连最小的都装不下了则说明这样得到
的解是最佳解, 问题解决. 这样我们必须先找出所有n 件物品中质量最小的那件( 它的质量为Min) , 但
是为了问题的解决我们不能增加运算次数太多, 并且必须运用上述递归函数. 那么我们可通过修改s 的
值即背包的容量, 从背包容量s 中减去k( 它的值是从0 到Min- 1 之间的一个整数值) , 再调用递归函
数. 当k= 0 时即能装满背包, 其它值也能保证背包能最大限度装满, 这样所有问题都解决了.

 

①例题一:

 

简单背包问题
Time Limit:   1000MS       Memory Limit:   65535KB 
Submissions:   2217       Accepted:   408

 

Description 
设有一个背包可以放入的物品重量为S,现有n件物品,重量分别是w1,w2,w3,…wn。 
问能否从这n件物品中选择若干件放入背包中,使得放入的重量之和正好为S。 
如果有满足条件的选择,则此背包有解,否则此背包问题无解。
  
Input输入数据有多行,包括放入的物品重量为s,物品的件数n,以及每件物品的重量(输入数据均为正整数)
多组测试数据。 
Output对于每个测试实例,若满足条件则输出“YES”,若不满足则输出“NO“ 
Sample Input
20 5
1 3 5 7 9
Sample Output
YES

复制代码
# include<stdio.h>
# include<string.h>
int date[1005];
int f(int w,int s)
{
    if(w==0) return 1;//正好
    if(w<0||w>0 &&s==0) return 0;
    if(f(w-date[s],s-1)) return 1;//退出来再选下一个 
    return f(w,s-1);//选择下一个
}

int main()
{
 int i,Weight,n;
 while(scanf("%d %d",&Weight,&n)!=EOF)
 {
     memset(date,0,sizeof(date));
 for(i=1;i<=n;i++)
  scanf("%d",&date[i]);
    if(f(Weight,n))
       printf("YES\n");
 else printf("NO\n");
 }
 return 0;
}
}
复制代码

 

2.贪心算法

用贪心法设计算法的特点是一步一步地进行,根据某个优化测度(可能是目标函数,也可能不是目标函数),每一步上都要保证能获得局部最优解。

每一步只考虑一个数据,它的选取应满足局部优化条件。若下一个数据与部分最优解连在一起不再是可行解时,就不把该数据添加到部分解中,

直到把所有数据枚举完,或者不能再添加为止。

复制代码
#include<iostream>
#include<algorithm>
using namespace std;
struct good//表示物品的结构体
{
 double p;//价值
 double w;//重量
 double r;//价值与重量的比
};
good a[2000];
bool bigger(good a,good b)
{
    if(a.r==b.r)return a.w<b.w;
    else return a.r>b.r;
}
int main()
{
double s,value,m;
int i,n;
 cin>>m>>n;//读入包的容量和物品个数
 for (i=0;i<n;i++)
 {
 cin>>a[i].w>>a[i].p;
  a[i].r=a[i].p/a[i].w;
 }
 sort(a,a+n,bigger);//调用sort排序函数,按照价值与重量比和质量排序贪心
 s=0;//包内现存货品的重量
 value=0;//包内现存货品总价值
 for (i=0;i<n;i++)
     if(s+a[i].w<=m)
     {
  value+=a[i].p;
  s+=a[i].w;
     }
cout<<"The total value is "<<value<<endl;//输出结果
 return 0;
} 
复制代码

但仔细想就会发现有个很大的问题,
10 4
5 10
8 16
5 5
10 10
就会出问题,被装进去就不会拿出来,可见“拿来主义”行不通!
接下来介绍另一种算法:动规

 

3.动态规划【正解】

有N件物品和一个容量为V的背包。第i件物品的体积是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。
状态转移方程:
f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]} 
这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的 
伪码:
  for i=1..N 
   for v=V..0 
    f[v]=max{f[v],f[v-c[i]]+w[i]};
如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,
价值为f[i-1][v];
如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,
此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。


②例题二:
采药

Time Limit:   1000MS       Memory Limit:   65535KB 
Submissions:   155       Accepted:   50


Description辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”
如果你是辰辰,你能完成这个任务吗?  
Input输入的第一行有两个整数T(1 <= T <= 1000)和M(1 <= M <= 100),用一个空格隔开,T代表总共能够用来采药的时间,M代表山洞里的草药的数目。接下来的M行每行包括两个在1到100之间(包括1和100)的整数,分别表示采摘某株草药的时间和这株草药的价值。 
Output输出包括一行,这一行只包含一个整数,表示在规定的时间内,可以采到的草药的最大总价值。 
Sample Input
70 3
71 100
69 1
1 2
Sample Output
3

复制代码
#include<iostream>
# include<cstring>
# define max(a,b) a>b?a:b
using namespace std;
int main()
{

    int dp[101][1001],m,T,w[101],val[101],i,j;
    cin>>T>>m;
    for(i=1;i<=m;i++)
        cin>>w[i]>>val[i];
    memset(dp,0,sizeof(dp));
    for(i=1;i<=m;i++)
     for(j=0;j<=T;j++)//j相当于上面说的V-c[i]
         {
    if(j>=w[i])
        dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+val[i]);//放还是不放的选择
    else dp[i][j]=dp[i-1][j];
     }
     cout<<dp[m][T]<<endl;
     return 0;
} 
复制代码

这里就测试一下,
10 4
5 10
8 16
5 5
10 10

 


一 问题描述:
     N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。
    所谓01背包,表示每一个物品只有一个,要么装入,要么不装入。

二 解决方案:
   考虑使用dp问题 求解,定义一个递归式 opt[i][v] 表示前i个物品,在背包容量大小为v的情况下,最大的装载量。
     opt[i][v] = max(opt[i-1][v] , opt[i-1][v-c[i]] + w[i]) 
   解释如下:
     opt[i-1][v] 表示第i件物品不装入背包中,而opt[i-1][v-c[i]] + w[i] 表示第i件物品装入背包中。

  花费如下:
     时间复杂度为o(V * T) ,空间复杂度为o(V * T) 。 时间复杂度已经无法优化,但是空间复杂度则可以进行优化。
     但必须将V 递减的方式进行遍历,即V.......0 的方式进行。
 
三 初始化:
   (1)若要求背包必须放满,则初始如下:
        f[0] = 0 , f[1...V]表示-INF。表示当容积为0时,只接受一个容积为0的物品入包。
   (2)若要求背包可以空下,则初始化如下:
        f[0...V] = 0 ,表示任意容积的背包都有一个有效解即为0。    
   具体解释如下:
     初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。
     如果要求背包恰好装满,那么此时只有容量为
0的背包可能被价值为0nothing“恰好装满
     其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是
-∞了。
     如果背包并非必须被装满,那么任何容量的背包都有一个合法解
什么都不装
     这个解的价值为
0,所以初始时状态的值也就全部为0了。

 四 代码如下:
   

/*
 01背包,使用了优化后的存储空间 
 建立数组
 
   f[i][v] = max(f[i-1][v]  ,  f[i-1][v-c[i]] + w[i])  
    将前i件物品,放入容量为v的背包中的最大值。
     

下面介绍一个优化,使用一维数组,来表示
(1) f[v]表示每一种类型的物品,在容量为v的情况下,最大值。
    但是体积循环的时候,需要从v----1循环递减。 
   
   
初始化问题: 
(1)若要求背包中不允许有剩余空间,则可以将f[0]均初始化为0,其余的f[1..n]均初始化为-INF 。 
    表示只有当容积为0 的时候,允许放入质量为0的物品。
    而当容积不为0的情况下,不允许放入质量为0的物品,并且把状态置为未知状态。   



(2)若要求背包中允许有剩余空间 ,则可以将f[1n],均初始化为0。
   这样,当放不下去的时候,可以空着。 
    
          
     
     
*/


#include 
< iostream >
 
using   namespace  std ; 
 
const    int  V  =   1000  ;   // 总的体积 
  const    int  T  =   5  ;     // 物品的种类 
  int  f[V + 1 ] ;
 
// #define EMPTY                                       // 可以不装满 
  int  w[T]  =   {8 , 10 , 4 , 5 , 5} ;         // 价值 
  int  c[T]  =   {600 , 400 , 200 , 200 , 300} ;         // 每一个的体积 
  const   int  INF  =   - 66536   ;
   
 
int  package()
 
{
 #ifdef EMPTY
    
for(int i = 0 ; i <= V ;i++//条件编译,表示背包可以不存储满
      f[i] = 0 ;    
 
#else
    f[
0= 0 ;
    
for(int i = 1 ; i <= V ;i++)//条件编译,表示背包必须全部存储满
      f[i] = INF ;   
 
#endif
    
    
for(int i = 0 ; i < T ; i++)
    
{
      
for(int v = V ; v >= c[i] ;v--//必须全部从V递减到0
         {              
           f[v] 
= max(f[v-c[i]] + w[i] , f[v])  ; //此f[v]实质上是表示的是i-1次之前的值。
         }
                 
    }

    
return f[V] ;        
 }

 
 
int  main()
 
{
      
   
int temp = package() ;   
   cout
<<temp<<endl     ;   
   system(
"pause")      ;
   
return 0 ;    
 }
 



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值