轻松驯服所有大模型!使用 Docker 从零到生产部署大模型的完整指南,分享给你,建议收藏

戳下方名片,关注并星标

回复“1024”获取2TB学习资源!

👉体系化学习:运维工程师打怪升级进阶之路 4.0

—   特色专栏  —

MySQL/PostgreSQL/MongoDB

ElasticSearch/Hadoop/Redis

Kubernetes/Docker/DevOps

Kafka/RabbitMQ/Zookeeper

监控平台/应用与服务/集群管理

Nginx/Git/Tools/OpenStack

大家好,我是民工哥!

随着深度学习和大模型的快速发展,如何高效地部署这些模型成为了一个重要的挑战。Docker 作为一种轻量级的容器化技术,能够将模型及其依赖环境打包成一个可移植的容器,极大地简化了部署流程。本文将详细介绍如何使用 Docker 部署大模型,并给出具体的步骤和示例。

为什么使用 Docker 部署大模型?

在部署大模型时,我们通常面临以下挑战:

  • 环境依赖复杂:大模型依赖于特定的库、框架和硬件(如 GPU)。

  • 可移植性差:在本地开发环境中运行的模型,可能无法直接在服务器上运行。

  • 扩展性不足:传统的部署方式难以应对高并发和大规模扩展的需求。

Docker 通过容器化技术解决了这些问题:

  • 环境隔离:将模型及其依赖打包到一个容器中,避免环境冲突。

  • 可移植性:容器可以在任何支持 Docker 的平台上运行。

  • 易于扩展:结合 Kubernetes 或 Docker Swarm,可以轻松实现负载均衡和扩展。

部署流程概述

使用 Docker 部署大模型的流程可以分为以下几个步骤:

  • 准备模型和代码:保存训练好的模型,并编写 API 服务代码。

  • 创建 Docker 镜像:编写 Dockerfile,定义容器环境。

  • 构建和运行容器:在本地或服务器上运行容器。

  • 测试和优化:验证 API 功能,并根据需求优化性能。

  • 部署到生产环境:将容器部署到云服务器或 Kubernetes 集群。

具体步骤

步骤 1:准备模型和代码
保存模型

将训练好的模型保存为文件。例如,使用 PyTorch 保存模型:

import torch
torch.save(model.state_dict(), "model.pth")
编写 API 服务

使用 Flask 或 FastAPI 编写一个简单的 API 服务。以下是一个 FastAPI 示例:

from fastapi import FastAPI
import torch
 
app = FastAPI()
 
# 加载模型
model = torch.load("model.pth")
model.eval()
 
@app.post("/predict")
def predict(input_data: dict):
    # 处理输入数据
    input_tensor = torch.tensor(input_data["data"])
    # 执行预测
    with torch.no_grad():
        output = model(input_tensor)
    return {"prediction": output.tolist()}
 
if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)
创建项目目录

将模型和代码组织到一个目录中:

my_model_deployment/
├── app/
│   ├── main.py              # API 服务代码
│   ├── requirements.txt     # Python 依赖
│   └── model.pth            # 模型文件
├── Dockerfile               # Docker 构建文件
└── README.md                # 项目说明
步骤 2:编写 Dockerfile

在项目根目录下创建 Dockerfile,定义容器环境:

Dockerfile

# 使用官方 Python 镜像
FROM python:3.9-slim
 
# 设置工作目录
WORKDIR /app
 
# 复制项目文件
COPY ./app /app
 
# 安装依赖
RUN pip install --no-cache-dir -r requirements.txt
 
# 暴露端口
EXPOSE 8000
 
# 启动服务
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000"]

在 app/requirements.txt 中列出 Python 依赖:

fastapi==0.95.2
uvicorn==0.22.0
torch==2.0.0
步骤 3:构建 Docker 镜像

在项目根目录下运行以下命令,构建 Docker 镜像:

docker build -t my_model_api .
  • -t my_model_api:为镜像指定一个名称。

  • .:表示使用当前目录下的 Dockerfile。

步骤 4:运行 Docker 容器

构建完成后,运行容器:

docker run -d -p 8000:8000 --name my_model_container my_model_api
  • -d:以守护进程模式运行容器。

  • -p 8000:8000:将容器的 8000 端口映射到主机的 8000 端口。

  • --name my_model_container:为容器指定一个名称。

步骤 5:测试 API

使用 curl 或 Postman 测试 API:

curl -X POST "http://localhost:8000/predict" -H "Content-Type: application/json" -d '{"data": [1.0, 2.0, 3.0]}'

如果一切正常,你会收到模型的预测结果。

步骤 6:部署到生产环境
推送镜像到 Docker Hub

登录 Docker Hub:

docker login

为镜像打标签:

docker tag my_model_api your_dockerhub_username/my_model_api:latest

推送镜像:

docker push your_dockerhub_username/my_model_api:latest
在服务器上运行容器

登录服务器,安装 Docker。

拉取镜像:

docker pull your_dockerhub_username/my_model_api:latest

运行容器:

docker run -d -p 8000:8000 --name my_model_container your_dockerhub_username/my_model_api:latest

高级优化

GPU 支持:如果需要 GPU 加速,可以使用 nvidia-docker 并安装 CUDA 支持的 PyTorch 或 TensorFlow 镜像。

负载均衡:使用 Kubernetes 或 Docker Swarm 管理多个容器实例。

日志和监控:使用 docker logs 查看容器日志,或集成 Prometheus 和 Grafana 进行监控。

总结

通过 Docker 部署大模型,可以极大地简化环境配置和部署流程,同时提高模型的可移植性和扩展性。本文详细介绍了从模型准备到生产部署的完整流程,希望能够帮助你快速上手 Docker 部署大模型的技术。如果你有更多问题,欢迎在评论区留言讨论!

来源:blog.csdn.net/weixin_43966908/article/details/146199191

👍 如果你喜欢这篇文章,请点赞并分享给你的朋友!

公众号读者专属技术群

构建高质量的技术交流社群,欢迎从事后端开发、运维技术进群(备注岗位,已在技术交流群的请勿重复添加微信好友)。主要以技术交流、内推、行业探讨为主,请文明发言。广告人士勿入,切勿轻信私聊,防止被骗。

扫码加我好友,拉你进群

8 个让你直呼卧槽的 Docker 神器,让你的服务器瞬间开挂!

防止暴力破解 SSH 的四种方法!附实例手把手讲解

全网最全 Win10/11 系统下 WSL2+Ubuntu20.04 的全流程安装指南

运维爽了!一款新型开源终端管理神器,从此告别繁琐的服务器管理

黑客看了都害怕的 K8s 集群安全加固方案,运维必看!

狂揽 79k star!GitHub 官方支持的画图神器,太好用了,好用到抽耳光都不愿放手

一款全球最受欢迎、超硬核的 ERP 系统!超千万人使用

35 岁脑干出血程序员发声!

运维必会!主流分布式存储方案:HDFS、Ceph、MinIO 深度剖析

别再死磕命令行了!来试试这款可视化运维神器吧,香,太香了,用完爱不释手

超越 Xshell!号称下一代终端神器,太好用了,好用到抽耳光都不愿放手

还在用千篇一律的 Windows 程序?来试试这款颜值与性能兼具的开源神器吧!

PS:因为公众号平台更改了推送规则,如果不想错过内容,记得读完点一下在看,加个星标,这样每次新文章推送才会第一时间出现在你的订阅列表里。点在看支持我们吧!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值