- 博客(820)
- 收藏
- 关注

原创 【智能算法】智能算法空间搜索图GIF,探索开发对比图,动态展示理解更清晰~
是指对已经发现的候选解进行优化,以使其更接近最优解。探索与开发的平衡是智能算法重要因素,它能够在搜索过程中平衡全局搜索和局部搜索。其中,median(xj)表示种群个体j维度上中位数。是指涉及搜索空间的广泛探索,以发现可能的解决方案。其中,Xpl,Xpt分别代表探索与开发。
2024-04-13 20:02:03
1001

原创 【智能算法改进】混沌映射策略--一网打尽
基本种群初始化是在整个空间内随机分布,具有较高的随机性和分布不均匀性,会导致种群多样性缺乏,搜索效率低等问题。许多学者利用混沌映射机制来增加种群的多样性,以改善算法的性能,其非线性特性和周期性质使得它能够生成更复杂、更随机的序列,有助于增加种群的多样性,避免种群陷入局部最优解。
2024-03-28 22:58:40
2966

原创 【智能算法】保姆级教程-如何使用CEC测试集,以及如何定义自己的优化问题
这里举例minfx1x2sinx1x22minfx1x2sinx1x22首先编写目标函数fun.m:有约束问题一般采用罚函数法将约束问题转为无约束问题,其思想是当优化变量不满足约束时进行惩罚。这里举例minfx1x2sinx1x22stx1x212x1−x20\\⎩⎨⎧minfx1x2sinx1x22st。
2024-03-16 22:35:05
3462
原创 2025年EB SCI2区TOP,多策略改进黑翅鸢算法MBKA+空调系统RC参数辨识与负载聚合分析,深度解析+性能实测
随着空调负载在电力系统中所占比例的不断上升,其作为需求响应资源的潜力日益凸显。然而,由于建筑环境和用户行为的变化,空调负载具有异质性和动态非线性特性,导致传统参数辨识与聚合建模精度不足。因此,本文提出一种多策略改进黑翅鸢算法(MBKA),结合一阶等效热参数(ETP)模型与实测数据,实现对空调系统中电阻和电容参数的准确识别。
2025-05-17 23:13:03
562
原创 【算法应用】多优化算法VS简单&复杂地图二维路径规划
1] 梁景润,刘丽桑,陈炯晖,等.多策略优化麻雀搜索算法及其路径规划的应用[J].福建理工大学学报,2023,21(06):605-612.[3] 张恩浩.基于麻雀搜索算法的移动机器人路径规划算法研究[D].重庆理工大学,2022.[2] 邓明杰.面向路径规划的群智能优化算法研究[D].江西理工大学,2023.优化算法VS求解二维路径规划问题。
2025-05-16 16:20:30
551
原创 2024年AMM SCI2区,混合混沌博弈灰狼算法HCGO+UAV路劲规划,深度解析+性能实测
本文提出了一种创新混合算法——混合混沌游戏灰狼算法(HCGO),该算法将灰狼算法与混沌游戏优化器相结合,巧妙地增强了算法在探索和开发方面的能力,丰富了种群多样性,提高了收敛精度,并保持了强大的探索能力。实验结果表明,混合算法在六个不同复杂度的场景中均表现出色,证明了其在解决复杂优化问题中的有效性。
2025-05-15 12:01:56
948
原创 2024年CIE SCI2区TOP,六边形网格地图模型+智能制造系统中AGV路径规划,深度解析+性能实测
在现代工业中,柔性制造系统发挥着不可或缺的作用,而地图建模的精度与连通性对提升AGV运输系统的效率与灵活性至关重要。针对实际制造环境中面临的空间限制、设备故障以及突发任务变更等挑战,本文提出了一种基于六边形网格地图建模的创新型AGV路径规划方法,该方法通过以六边形网格替代传统的方形网格,显著提升了路径规划的连通性、采样频率与安全性。本研究还将改进的蚁群算法与六边形网格地图结合应用于AGV路径规划,算法引入了启发因子,有效避免陷入局部最优。通过将蚁群划分为奇偶两组并采用双向搜索策略,增强了算法的全局探索能力。
2025-05-14 11:14:41
1240
原创 2025年RIS SCI2区,改进白鲸优化算法+复杂非线性方程组求解,深度解析+性能实测
本文提出了一种改进白鲸优化算法(ABWOA)用来解决非线性方程组(SNLEs)求解问题。ABWOA引入了平衡因子和非线性自适应参数,实现了探索与开发之间平衡,增加了鲸鱼跳跃的概率,帮助避免陷入局部最优解,并提高了算法在局部搜索中的效率。
2025-05-13 23:13:45
684
原创 2025年Energy SCI1区TOP,改进雪消融优化算法ISAO+电池健康状态估计,深度解析+性能实测
锂离子电池(LIBs)的健康状态(SOH)估计对于电池健康管理系统至关重要,为了准确估计LIBs的健康状态,本文提出了一种集成改进雪消融优化算法(ISAO)、深度极限学习机(DELM)和混合核极限学习机(HKELM)的混合模型。ISAO算法融合融合拉丁超立方采样、Levy飞行策略及正态云模型等策略,有效降低算法陷入局部最优的风险,并用于优化DHKELM模型的关键参数。
2025-05-12 21:18:50
975
原创 2025年KBS SCI1区TOP,团队行为粒子群算法TBPSO+无人机部署,深度解析+性能实测
本文针对传统粒子群算法存在的收敛精度低、收敛速度慢以及易陷入局部最优等问题,提出了一种融合团队协作机制粒子群算法(TBPSO)。TBPSO算法将粒子划分为多个团队,由团队领导者引导搜索方向,通过信息因子的传递提升全局搜索能力,降低陷入局部最优的风险。同时引入信息因子和学习因子的自适应调节机制,使算法能够根据问题特性和搜索状态动态调整参数,从而加快收敛速度并提高精度。
2025-05-11 14:34:51
703
2
原创 【多目标优化】适合发表!2025年1区TOP KBS 长颖燕麦算法AOO, 非支配排序长颖燕麦算法NSAOO+46种多目标测试集
通过计算个体在目标空间中的距离,可以有效避免选择相似的个体,从而增强解的多样性。对当前前沿层中的每个个体,更新其支配的个体的被支配计数。如果某个被支配个体的被支配计数减为0,则将其加入集合 Q 并赋予新的层次排名。如果一个个体支配另一个个体,就将其添加到支配集合中,并增加被支配计数;c.构建第一层前沿,识遍历种群,找出被支配计数为0的个体(即不被其他任何个体支配的个体),将这些个体加入第一层前沿;非支配排序方法通过比较种群中个体之间的支配关系,将个体分为不同的前沿层次。原创未发表,感兴趣可以私信我。
2025-05-09 21:43:27
512
原创 2020年NCA CCF-C,改进灰狼算法RSMGWO+大规模函数优化,深度解析+性能实测
灰狼优化算法(GWO)是一种新型自然启发式算法,具备较强的局部搜索能力,但在处理大规模问题时全局搜索能力较弱。本文提出了改进灰狼算法(RSMGWO),RSMGWO算法结合了随机对立学习、增强灰狼层级结构和修改进化种群动态(EPD)。
2025-05-07 21:43:02
814
原创 2018年ASOC SCI1区TOP,混合灰狼算法HBBOG,深度解析+性能实测
为提升生物地理优化算法(BBO)的通用性与性能,本文提出一种混合灰狼算法(HBBOG)。HBBOG算法首先对BBO去除传统变异算子并引入差分变异机制,提高全局搜索能力;同时采用多重迁移操作,增强局部搜索能力。GWO则引入对立学习策略,以避免陷入局部最优。HBBOG算法通过单维与全维交替策略将改进后的BBO与GWO进行有机融合,兼顾了算法的全局探索与局部开发能力。
2025-05-06 20:12:11
927
原创 2022年AEF SCI2区:改进算术优化算法LMRAOA,深度解析+性能实测
本文提出了一种改进算术优化算法(LMRAOA)用于求解数值和工程优化问题,LMRAOA算法采用多领导者游动搜索策略(MLWAS)提升全局搜索能力,增强探索性;随机高速跳跃策略(RHSJ)加强局部搜索效率,提高开发能力;自适应透镜对立学习策略结合动态参数调整,有效避免陷入局部最优。
2025-05-05 10:53:30
944
原创 2019年SEVC SCI1区TOP:维度学习粒子群算法TSLPSO,深度解析+性能实测
传统粒子群算法(PSO)通过粒子根据个体最佳经验和种群最佳经验更新速度和位置,虽然这种学习机制简单易行,但容易产生振荡等问题。因此设计一种有效的学习策略,以克服这些问题并提高搜索效率,成为PSO研究中的重要课题。本文提出了一种基于粒子个人最佳经验维度学习策略(DLS),其用来发现并整合种群最佳解中的有前景信息。基于BLS,本文提出了双群学习粒子群算法(TSLPSO),该算法采用不同的学习策略:一个子群通过DLS构建学习示例来引导粒子的局部搜索,另一个子群则通过综合学习策略来引导全局搜索。
2025-05-04 10:40:40
425
原创 【算法应用】基于灰狼算法优化深度信念网络回归预测(GWO-DBN)
深度信念网络(Deep Belief Networks, DBNs)是由Geoffrey Hinton于2006年提出的一种经典深度生成模型,它通过将多个受限玻尔兹曼机(RBM)单元堆叠在一起进行训练。RBM是一种无向的生成式能量模型,具有可见输入层和隐藏层,层与层之间有连接,但同一层内的单元之间没有连接。DBN从下到上分别将每层信念网络当做RBF进行训练,然后固定当前层权值,取样当前层的隐层作为下一层的输入。是分配给网络状态的能量函数,能量越低,表示网络处于“理想”配置。是配分函数(正则化),
2025-05-03 19:16:54
1033
原创 【算法应用】基于鲸鱼优化算法WOA求解VRPTW问题
VRPTW问题基于VRP问题,每个客户点都有一个时间窗口,表示可以在某个时间范围内访问。目标是在满足时间窗口和车辆容量限制的情况下,最小化总行驶距离或成本。[1] 李琳, 刘士新, 唐加福. 改进的蚁群算法求解带时间窗的车辆路径问题[J]. 控制与决策, 2010(09):102-106.
2025-05-02 21:28:58
1574
1
原创 2024年US SCI1区TOP:自适应变异麻雀搜索算法AMSSA+地铁隧道变形预测,深度解析+性能实测
本文提出了AMSSA-Elman-AdaBoost耦合模型,该模型将Elman-AdaBoost与自适应变异麻雀搜索算法(AMSSA)相结合,用于预测软土地层中邻近深基坑开挖引发的既有地铁隧道变形。AMSSA算法采用混沌序列生成初始种群,增强了个体分布的遍历性和随机性,从而提高了算法的全局搜索能力。AMSSA引入Tent混沌扰动和柯西变异算子,有效避免了种群过早收敛或过度分散的问题,增强了局部搜索能力。自适应平衡策略提出了生产者-跟随者数量的自适应调整公式,实现了全局探索与局部开发能力的动态平衡。
2025-05-01 13:28:08
909
原创 2025年ASOC SCI2区TOP:思维创新策略TIS +一种设计和进化更新机制,深度解析+性能实测
传统优化算法通过两种主要策略进行:探索和开发,然而随着问题复杂性的增加和应用场景的扩展,优化算法在平衡探索与开发以寻找最优解上遇到了难题。本文引入了基于个体思维的创新特性,并提出了一种名为思维创新策略(TIS)的新方法。TIS策略不单单追求最优解,而是侧重于基于成功个体的全局优化,通过适者生存原则来提升算法性能。
2025-04-30 18:01:20
1063
原创 2025年KBS新算法 SCI1区TOP:长颖燕麦优化算法AOO,深度解析+性能实测
本文提出了一种新颖的元启发式算法——长颖燕麦优化算法(AOO),该算法灵感来自动画燕麦在环境中的自然行为。AOO模拟了长颖燕麦的三种独特行为:(i) 通过自然元素如风、水和动物进行种子传播;(ii) 在吸湿运动的影响下,长颖燕麦种子的主要芒刺发生变形和旋转,使整个种子能够滚动并传播;(iii) 在滚动传播过程中,当种子遇到障碍物时,会储存能量,并在特定条件下触发推进机制,进一步传播种子。
2025-04-29 20:29:46
1484
原创 2025年ISA Trans SCI2区TOP:超级哈里斯鹰算法Super-HHO+高功率机车悬挂载荷偏差控制,深度解析+性能实测
本研究建立了六轴铁路车辆静态二次弹簧载荷调节的理论模型,该模型适用于各种六轴铁路车辆,如机车、地铁、客运列车和货运列车。本文提出了一种简化的支撑结构模型,通过将六轴车辆的12点支撑结构简化为4点支撑结构,有效减少了计算复杂度,将超级哈里斯鹰优化算法(Super-HHO)应用于铁路车辆悬挂载荷控制领域,不仅减少了垫片的位置和数量,降低了垫片工作量,还提升了静态二次弹簧载荷偏差控制的效率。
2025-04-28 20:13:44
602
原创 2025年AEJ SCI2区:增强麻雀搜索算法CERL-SSA+工业物联网感知通信,深度解析+性能实测
感知、通信和协同优化是工业物联网(IIoT)研究中的关键领域,本文通过将能源消耗问题转化为优化挑战,探索如何在IIoT用户终端设备中减少能源消耗。论文提出了一种数据感知共享架构来降低设备能耗,并在多个智能终端设备、协同设备和边缘IIoT代理设备的场景下,综合考虑用户设备位置稳定性、本地网络状态、任务到达率和队列稳定性等因素。本文提出了混沌精英反向学习麻雀搜索算法(CERL-SSA)。实验结果表明,CERL-SSA算法在IIoT感知通信和协同优化中的性能和有效性优于传统方法,验证了其优越性。
2025-04-27 20:43:23
781
原创 【算法应用】基于灰狼算法求解DV-Hop定位问题
在无线传感器网络中 DV-Hop 算法是一种被广泛应用的与距离无关的定位算法,该算法中利用网络层的一个重要信息—邻居锚节点的信息进行定位。图中未知节点与邻居锚节点之间关系的示意图,其中A表示锚节点,U表示未知节点。收到信息包的节点仅保留与每个锚节点之间的最小跳数值,舍弃较大的跳数值,然后将该最小跳数值加1后再次向邻居节点广播。通过这种方式,网络内所有节点都能获取到达各锚节点的最小跳数信息。当未知节点获得平均跳距值后,即可根据之前计算得到的跳数确定自身与锚节点之间的距离。为这两个节点之间的距离。
2025-04-27 18:45:00
756
原创 2024年ASOC SCI1区TOP:改进灰狼算法IGWO+股票指数收益预测,深度解析+性能实测
股票指数收益预测是商业经理和投资者进行资产配置与投资决策的重要依据,为提高预测精度,本文提出了一种基于改进灰狼算法(IGWO)与树突神经模型(DNM)相结合的模型。DNM具有更透明的结构、较强的非线性处理能力,并具备独特的自动修剪机制,能够有效应对金融市场的复杂性。IGWO为全局和局部搜索算法开发了用于动态平衡的非线性控制参数,引入混沌理论来优化灰狼的权重分配,Alpha狼局部搜索策略。
2025-04-24 20:59:13
982
原创 【算法应用】基于哈里鹰优化算法的复杂环境下无人机路径规划
为了实现UAV的高效运行,计划的路径需要在某一特定标准上达到最优。UAV飞行路径Xi表示为UAV需要飞过的一系列n个航路点,每个航路点对应搜索地图中的一个路径节点,其坐标为Pij = (xij, yij, zij)。除了最优性外,计划的路径还需要通过引导UAV避开操作空间中出现的障碍来确保UAV的安全运行。设K为所有威胁的集合,每个威胁假设为一个圆柱体,其投影中心坐标为Ck,半径为Rk。,与威胁相关的成本与其到Ck的距离dk成正比。UAV平滑度是对UAV方位角和俯仰角约束,这些是生成可行路径的关键。
2025-04-23 20:35:17
411
原创 2024年ESWA SCI1区TOP:量子计算蜣螂算法QHDBO,深度解析+性能实测
蜣螂优化算法是一种群体智能优化算法,具有较强的优化能力和快速收敛性,但容易在优化过程后期陷入局部最优解。本文提出了一种量子计算和多策略混合的蜣螂优化算法(QHDBO),QHDBO通过佳点集初始化种群,动态平衡机制,量子t分布变异策略增强DBO算法,可以避免算法陷入局部最优解。
2025-04-22 22:02:11
1411
原创 2024年TETCI SCI2区:增强差分进化麻雀搜索算法DSSADE,深度解析+性能实测
麻雀搜索算法(SSA)是近年来提出的一种新型群体智能优化方法,因其控制参数少且实现简便,迅速成为一种高效且受欢迎的优化方法。尽管SSA在解决问题时准确性较高且收敛速度快,但其在应对复杂优化问题时表现不佳,且在探索与开发能力之间存在不平衡。本文提出了一种改进差分进化算子的动态双因子麻雀搜索算法(DSSADE),DSSADE算法通过引入动态双因子模式,平衡了全局与局部搜索能力,并加速了收敛过程。
2025-04-21 21:18:34
740
原创 2025年KBS SCI1区TOP:增强天鹰算法EBAO,深度解析+性能实测
本文提出了增强二进制天鹰算法(EBAO),针对无线传感器网络(WSNs)中的入侵检测系统(IDSs)。由于WSNs的特点是规模庞大、节点移动性强以及存储空间有限,设计有效的IDS存在诸多挑战。EBAO模型通过特征选择(FS)技术,降低数据维度并提高IDS的准确性,从而优化入侵检测过程。EBAO采用混合初始化方法,结合Lévy飞行和随机均匀生成函数生成更适合FS问题的解决方案;β-爬山算法作为局部搜索技术增强AO在FS解决空间中的搜索效率;利用哈里斯鹰优化算法中的变异方程来探索FS解决空间。
2025-04-19 23:08:02
663
原创 2024年RIS SCI2区:自适应天鹰算法AAO,深度解析+性能实测
智能电网通过集成可再生能源并管理供需动态平衡来提高效率,本文提出了自适应天鹰算法(AAO),AAO使用Sigmoid因子来平衡探索和开发,根据迭代进度适应从广泛搜索到聚焦搜索的转变。
2025-04-18 21:11:44
652
原创 2025年OE SCI2区TOP:多种群灰狼算法NCM-GWO,UUV群协同路径规划,深度解析+性能实测
路径规划对于实现无人水下航行器(UUV)集群在复杂和动态水下环境中的高效协同作业至关重要。本文提出了一种三维UUV集群协同路径规划框架,其基于改进灰狼算法NCM-GWO构建,其通过将布谷鸟搜索(CS)的全局搜索机制与多种群策略(MP)的局部精细化机制相结合,实现探索和开发之间实平衡。此外,NCM-GWO采用非线性搜索策略动态调整收敛因子,进一步增强了算法在复杂三维环境中的性能。
2025-04-17 19:22:52
601
原创 2023年CCF-C NCA:自适应麻雀搜索算法MASSA,深度解析+性能实测
麻雀搜索算法(SSA)是一种受麻雀觅食策略启发的元启发式算法,尽管SSA性能竞争力强,但仍存在开发与探索不平衡,容易陷入局部最优的问题。本文提出改进自适应麻雀搜索算法(MASSA),其通过引入混沌反向学习技术增加种群多样性,并通过动态自适应权重来平衡算法的开发与探索能力。此外,自适应螺旋搜索策略进一步提升了MASSA的性能。
2025-04-16 20:17:28
568
原创 2025年RIE SCI2区:三角变异黏菌算法TMSMA,深度解析+性能实测
全局优化涉及多个领域,为解决复杂的多变量问题提供了有效的方案,这些问题通常是高度非线性和高维的。负荷频率控制对于维持孤岛微电网的稳定性至关重要。当发生扰动时,系统频率会发生波动,必须抑制这些波动,以确保孤岛微电网的可靠运行。本文提出了三角变异粘菌算法(TMSMA),TMSMA使用佳点集进行种群初始化,相比于均匀随机初始化,增强了多样性;引入三角变异作为主要的探索机制,有效识别潜在的有利区域;采用多操作并行搜索,平衡探索和开发,提升了算法在多变环境中的适应性。
2025-04-15 22:02:42
895
原创 2025年SP SCI2区:自适应灰狼算法IGWO,深度解析+性能实测
在复杂的电磁环境中,利用被动雷达网络跟踪干扰源对于增强抗干扰能力、军事作战安全和战略决策具有重要意义。然而,传统的干扰源跟踪算法由于被动雷达系统的高度非线性和未知噪声特性,常常存在跟踪精度低和收敛速度慢的问题。为了提高被动雷达网络的干扰源跟踪能力,本文提出了一种基于改进灰狼算法的最大相关熵立方卡尔曼滤波器。IGWO提出了一种通过高斯随机游走和高斯变异策略改进的灰狼优化机制,用于准确估计未知过程和测量噪声的特性,为立方卡尔曼滤波算法提供更准确的模型参数。
2025-04-14 20:08:58
1025
原创 2025年CG SCI1区TOP:增强麻雀搜索算法ISSA,深度解析+性能实测
为实现混凝土面板堆石坝坝体与基础渗透系数的快速、准确反演,本文提出了一种基于改进麻雀搜索算法与支持向量机相结合的ISSA-SVR模型,该模型通过引入Circle映射初始化、周期性收敛因子及莱维飞行机制,有效解决了传统麻雀搜索算法中初始种群分布不均与易陷入局部最优的问题。
2025-04-13 15:59:34
1089
原创 2025年ESWA SCI1区TOP:动态分类麻雀搜索算法DSSA,深度解析+性能实测
污染物排放对环境造成负面影响,而可再生能源的不稳定性则威胁着微电网的安全运行。为了在保障电力供应可靠性的同时实现环境和经济目标的平衡,本文提出了一种动态分类麻雀搜索算法(DSSA),用于解决孤立微电网中的经济环境调度问题。DSSA采用精英opposition-Chebyshev初始化策略,优化初始解的多样性和均匀性。受因材施教理念启发,DSSA将麻雀种群动态划分为三个组,并为每个组采用不同策略,从而提高收敛速度和精度。基于马尔科夫链理论,证明了DSSA的收敛性。
2025-04-12 11:35:50
770
原创 2020年INS SCI1区TOP:平衡复合运动优化算法BCMO,深度解析+性能实测
元启发式算法因其强大的鲁棒性和简便的编程方式,在优化领域中发挥着重要作用。本文提出了一种基于平衡复合运动优化算法BCMO,其核心思想是在解空间中平衡个体的复合运动特性。通过概率选择模型,使全局搜索与局部搜索得以均衡,从而为每个个体创建一种运动机制。
2025-04-11 22:36:06
602
原创 【算法应用】指数-三角优化算法求解二维栅格路径规划问题
1] 梁景润,刘丽桑,陈炯晖,等.多策略优化麻雀搜索算法及其路径规划的应用[J].福建理工大学学报,2023,21(06):605-612.栅格法模型最早由 W.E. Howden 于 1968 年提出,障碍物的栅格用黑色表示,可通过的自由栅格用白色表示。[3] 张恩浩.基于麻雀搜索算法的移动机器人路径规划算法研究[D].重庆理工大学,2022.[2] 邓明杰.面向路径规划的群智能优化算法研究[D].江西理工大学,2023.求解二维路径规划问题时,一般采用八领域搜索。
2025-04-10 22:28:47
935
原创 2024年KBS SCI1区TOP:信息增益比子特征分组赋能粒子群算法ISPSO,深度解析+性能实测
特征选择是机器学习中的关键预处理步骤,广泛应用于实际问题。尽管粒子群算法(PSO)因其强大的全局搜索能力被广泛用于特征选择,但要开发一种高效的PSO方法仍然面临不小的挑战。本文提出了信息增益比子特征分组赋能粒子群算法ISPSO,该方法通过引入信息增益比来评估特征的重要性,从而提升特征选择的效果。在ISPSO的特征选择过程中,首先将特征划分为不同的组,以构建初始种群。鉴于特征选择任务本质上是二元问题,ISPSO采用了基于概率的方法代替传统的PSO速度概念。
2025-04-10 19:54:51
803
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人