自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(200)
  • 收藏
  • 关注

原创 【资源清单】代码资源清单导航~

代码资源清单文档

2024-04-24 08:17:02 797

原创 【智能算法】智能算法空间搜索图GIF,探索开发对比图,动态展示理解更清晰~

是指对已经发现的候选解进行优化,以使其更接近最优解。探索与开发的平衡是智能算法重要因素,它能够在搜索过程中平衡全局搜索和局部搜索。其中,median(xj)表示种群个体j维度上中位数。是指涉及搜索空间的广泛探索,以发现可能的解决方案。其中,Xpl,Xpt分别代表探索与开发。

2024-04-13 20:02:03 744

原创 【智能算法】省时方便,智能算法统计指标——一键运行~

可自定义测试参数,测试算法自定义测试算法(改进算法),自定义配色(SCI配色谁不喜欢🤣。

2024-04-10 22:32:34 555

原创 【智能算法改进】混沌映射策略--一网打尽

基本种群初始化是在整个空间内随机分布,具有较高的随机性和分布不均匀性,会导致种群多样性缺乏,搜索效率低等问题。许多学者利用混沌映射机制来增加种群的多样性,以改善算法的性能,其非线性特性和周期性质使得它能够生成更复杂、更随机的序列,有助于增加种群的多样性,避免种群陷入局部最优解。

2024-03-28 22:58:40 1517

原创 【智能算法】保姆级教程-如何使用CEC测试集,以及如何定义自己的优化问题

这里举例minfx1x2sinx1x22minfx1​x2​sinx1​x22​首先编写目标函数fun.m:有约束问题一般采用罚函数法将约束问题转为无约束问题,其思想是当优化变量不满足约束时进行惩罚。这里举例min⁡fx1x2sinx1x22stx1x212x1−x20\\⎩⎨⎧​minfx1​x2​sinx1​x22​st。

2024-03-16 22:35:05 1589

原创 【智能算法应用】遗传算法求解车间布局优化问题

工厂设施布置的规划一直是工业工程领域不断研究和探索的内容, 其中最具代表性之一的是系统布置设计( system layout planning, SLP) 方法。作为一种经典且有效的方法, 其为设施布置提供了很好的改善思路, 但在长期的发展中也存在一些不可避免的缺点, 如计算结果不够精确, 很难确保计算结果较优且受人员主观因素的影响较大等。Li, Lj 与 Wi, Wj 分别为作业单位 i, j 的长与宽;其中,C2 为非物流关系总和,Tij 为作业单位之间非物流关系的紧密程度。

2024-05-23 23:32:31 1084

原创 【智能算法应用】白鲸优化算法求解二维路径规划问题

1] 梁景润,刘丽桑,陈炯晖,等.多策略优化麻雀搜索算法及其路径规划的应用[J].福建理工大学学报,2023,21(06):605-612.[3] 张恩浩.基于麻雀搜索算法的移动机器人路径规划算法研究[D].重庆理工大学,2022.[2] 邓明杰.面向路径规划的群智能优化算法研究[D].江西理工大学,2023.

2024-05-23 09:48:31 777

原创 【智能算法应用】黑翅鸢优化算法求解二维路径规划问题

1] 梁景润,刘丽桑,陈炯晖,等.多策略优化麻雀搜索算法及其路径规划的应用[J].福建理工大学学报,2023,21(06):605-612.[3] 张恩浩.基于麻雀搜索算法的移动机器人路径规划算法研究[D].重庆理工大学,2022.[2] 邓明杰.面向路径规划的群智能优化算法研究[D].江西理工大学,2023.

2024-05-23 09:30:56 1027

原创 【智能算法应用】鹭鹰优化算法求解二维路径规划问题

1] 梁景润,刘丽桑,陈炯晖,等.多策略优化麻雀搜索算法及其路径规划的应用[J].福建理工大学学报,2023,21(06):605-612.[3] 张恩浩.基于麻雀搜索算法的移动机器人路径规划算法研究[D].重庆理工大学,2022.[2] 邓明杰.面向路径规划的群智能优化算法研究[D].江西理工大学,2023.

2024-05-23 09:21:11 731

原创 【智能算法应用】北方苍鹰优化算法求解二维路径规划问题

1] 梁景润,刘丽桑,陈炯晖,等.多策略优化麻雀搜索算法及其路径规划的应用[J].福建理工大学学报,2023,21(06):605-612.[3] 张恩浩.基于麻雀搜索算法的移动机器人路径规划算法研究[D].重庆理工大学,2022.[2] 邓明杰.面向路径规划的群智能优化算法研究[D].江西理工大学,2023.

2024-05-23 09:15:54 853

原创 【智能算法应用】哈里森鹰算法求解二维路径规划问题

1] 梁景润,刘丽桑,陈炯晖,等.多策略优化麻雀搜索算法及其路径规划的应用[J].福建理工大学学报,2023,21(06):605-612.[3] 张恩浩.基于麻雀搜索算法的移动机器人路径规划算法研究[D].重庆理工大学,2022.[2] 邓明杰.面向路径规划的群智能优化算法研究[D].江西理工大学,2023.

2024-05-23 09:10:18 386

原创 【智能算法应用】麻雀搜索算法求解二维路径规划问题

1] 梁景润,刘丽桑,陈炯晖,等.多策略优化麻雀搜索算法及其路径规划的应用[J].福建理工大学学报,2023,21(06):605-612.[3] 张恩浩.基于麻雀搜索算法的移动机器人路径规划算法研究[D].重庆理工大学,2022.[2] 邓明杰.面向路径规划的群智能优化算法研究[D].江西理工大学,2023.

2024-05-22 23:24:25 707

原创 【智能算法】白鲸优化算法(BWO)原理及实现

少数白鲸坠落深海,滋养生物,形成“鲸鱼坠落”现象。BWO算法模拟了白鲸的行为,如游泳、捕食和鲸鱼坠落。探索阶段通过随机选择白鲸来保证设计空间的全局搜索能力,开发阶段控制设计空间的局部搜索能力。其中,sin(2πr2)和cos(2πr2)表示镜像白鲸的鳍朝向水面,根据奇数和偶数选择的维度,更新后的位置反映了白鲸在游泳或潜水时的同步或镜像行为。2022年,C Zhong受到自然界白鲸行为启发,提出了白鲸优化算法(Beluga Whale Optimization, BWO)。其中,LF是莱维飞行步长。

2024-05-20 23:46:39 975

原创 【智能算法应用】天鹰优化算法求解二维栅格路径规划问题

1] 梁景润,刘丽桑,陈炯晖,等.多策略优化麻雀搜索算法及其路径规划的应用[J].福建理工大学学报,2023,21(06):605-612.栅格法模型最早由 W.E. Howden 于 1968 年提出,障碍物的栅格用黑色表示,可通过的自由栅格用白色表示。[3] 张恩浩.基于麻雀搜索算法的移动机器人路径规划算法研究[D].重庆理工大学,2022.[2] 邓明杰.面向路径规划的群智能优化算法研究[D].江西理工大学,2023.求解二维路径规划问题时,一般采用八领域搜索。

2024-05-19 23:40:24 534

原创 【智能算法应用】鹭鹰优化算法求解二维栅格路径规划问题

1] 梁景润,刘丽桑,陈炯晖,等.多策略优化麻雀搜索算法及其路径规划的应用[J].福建理工大学学报,2023,21(06):605-612.栅格法模型最早由 W.E. Howden 于 1968 年提出,障碍物的栅格用黑色表示,可通过的自由栅格用白色表示。[3] 张恩浩.基于麻雀搜索算法的移动机器人路径规划算法研究[D].重庆理工大学,2022.[2] 邓明杰.面向路径规划的群智能优化算法研究[D].江西理工大学,2023.求解二维路径规划问题时,一般采用八领域搜索。

2024-05-19 23:22:02 675

原创 【智能算法应用】火鹰优化算法求解二维栅格路径规划问题

1] 梁景润,刘丽桑,陈炯晖,等.多策略优化麻雀搜索算法及其路径规划的应用[J].福建理工大学学报,2023,21(06):605-612.栅格法模型最早由 W.E. Howden 于 1968 年提出,障碍物的栅格用黑色表示,可通过的自由栅格用白色表示。[3] 张恩浩.基于麻雀搜索算法的移动机器人路径规划算法研究[D].重庆理工大学,2022.[2] 邓明杰.面向路径规划的群智能优化算法研究[D].江西理工大学,2023.求解二维路径规划问题时,一般采用八领域搜索。

2024-05-19 23:15:06 702

原创 【智能算法应用】秃鹰搜索算法求解二维栅格路径规划问题

1] 梁景润,刘丽桑,陈炯晖,等.多策略优化麻雀搜索算法及其路径规划的应用[J].福建理工大学学报,2023,21(06):605-612.栅格法模型最早由 W.E. Howden 于 1968 年提出,障碍物的栅格用黑色表示,可通过的自由栅格用白色表示。[3] 张恩浩.基于麻雀搜索算法的移动机器人路径规划算法研究[D].重庆理工大学,2022.[2] 邓明杰.面向路径规划的群智能优化算法研究[D].江西理工大学,2023.求解二维路径规划问题时,一般采用八领域搜索。

2024-05-19 22:54:07 255

原创 【智能算法应用】麻雀搜索算法优化SVM分类问题

支持向量机(Support Vector Machine,SVM)是一种监督学习算法,用于分类和回归任务。SVM的主要目标是找到一个最佳的超平面,可以将不同类别的样本分开,并且使得两个类别的样本之间的间隔最大化。[1] 史峰, 王辉, 郁磊. MATLAB 智能算法 30 个案例分析[J]. 2011.SVM中参数c 和g是两个重要的超参数,它们分别用于控制。

2024-05-19 21:22:49 990

原创 【智能算法|论文复现】猫鼬优化算法(MOA)原理及实现

猫鼬生活在群体中,其生存依赖于协作和互助,其中哨兵猫鼬负责监视周围环境并警告群体成员,使其能够适时地采取行动以应对外部威胁或变化。为了找到尽可能多的食物,猫鼬群体在每次迭代中都有一定的机会向随机方向探索,这有助于跳出局部最优,找到更好的食物资源。在另一种情况下,猫鼬在搜索过程中随机发现其他同伴,并接近它们进行协同狩猎,其中𝑋𝑗是除了自己之外随机选择的个体。在rand>sentry紧急情况下,猫鼬会寻找天敌或灾害,并发出警告,让猫鼬个体避难或反击。其中,step是Levy飞行步长。

2024-05-19 15:43:10 954

原创 【智能算法应用】麻雀搜索算法求解二维栅格路径规划问题

1] 梁景润,刘丽桑,陈炯晖,等.多策略优化麻雀搜索算法及其路径规划的应用[J].福建理工大学学报,2023,21(06):605-612.栅格法模型最早由 W.E. Howden 于 1968 年提出,障碍物的栅格用黑色表示,可通过的自由栅格用白色表示。[3] 张恩浩.基于麻雀搜索算法的移动机器人路径规划算法研究[D].重庆理工大学,2022.[2] 邓明杰.面向路径规划的群智能优化算法研究[D].江西理工大学,2023.求解二维路径规划问题时,一般采用八领域搜索。

2024-05-18 23:53:56 379

原创 【智能算法应用】黑翅鸢优化算法求解二维栅格路径规划问题

1] 梁景润,刘丽桑,陈炯晖,等.多策略优化麻雀搜索算法及其路径规划的应用[J].福建理工大学学报,2023,21(06):605-612.栅格法模型最早由 W.E. Howden 于 1968 年提出,障碍物的栅格用黑色表示,可通过的自由栅格用白色表示。[3] 张恩浩.基于麻雀搜索算法的移动机器人路径规划算法研究[D].重庆理工大学,2022.[2] 邓明杰.面向路径规划的群智能优化算法研究[D].江西理工大学,2023.求解二维路径规划问题时,一般采用八领域搜索。

2024-05-18 12:13:58 683

原创 【智能算法应用】北方苍鹰算法求解二维栅格路径规划问题

1] 梁景润,刘丽桑,陈炯晖,等.多策略优化麻雀搜索算法及其路径规划的应用[J].福建理工大学学报,2023,21(06):605-612.栅格法模型最早由 W.E. Howden 于 1968 年提出,障碍物的栅格用黑色表示,可通过的自由栅格用白色表示。[3] 张恩浩.基于麻雀搜索算法的移动机器人路径规划算法研究[D].重庆理工大学,2022.[2] 邓明杰.面向路径规划的群智能优化算法研究[D].江西理工大学,2023.求解二维路径规划问题时,一般采用八领域搜索。

2024-05-18 11:09:10 870

原创 【智能算法】黑翅鸢优化算法(BKA)原理及实现

迁移通常由领导者领导,作者提出了一个基于鸟类迁徙的假设:如果当前种群的适应度值小于随机种群的适应度值,那么领导者将放弃领导并加入迁徙种群,这表明它不适合领导种群前进。黑翅鸢是草原小型哺乳动物和昆虫的捕食者,在飞行过程中根据风速调整翅膀和尾巴的角度,静静地悬停观察猎物,然后迅速俯冲攻击,该策略包括不同的攻击行为,用于全局探索和搜索。2024年,J Wang受到黑翅鸢迁徙和捕食行为启发,提出了黑翅鸢优化算法(Black-winged Kite Algorithm, BKA)。同时,BKA集成了一种。

2024-05-18 10:19:24 892

原创 【智能算法】差异化创造性搜索算法(DCS)原理及实现

DKA与DE交叉的主要区别在于其根植于人类知识获取潜力的不同概念,更接近于自然过程,而不是DE所体现的随机原则。Xr1是从包括高绩效成员(绿色突出显示)在内的整个总体中随机选择的,而Xr2是从非高绩效成员(橙色突出显示)中选择的。DCS/Xbest/Current-to-2rand策略依赖于顶级表现者的知识库,并将两名团队成员的随机贡献纳入当前个体所提出的解决方案中。φ系数随这些知识差距的程度而变化,值越高表示知识差距越大,表明个体更需要学习、吸收和吸收新的知识或经验。

2024-05-17 16:09:04 864

原创 【智能算法应用】基于小龙虾优化算法的二维最大熵图像阈值分割

二维熵图像分割方法不仅侧重于考虑每个像素的灰度值,还细致地考察了像素邻域内的灰度分布,从而为图像分割提供了更丰富的信息。通过设置灰度阈值 t 和邻域阈值 s,图像被细分为四个区域:两个主要区域(目标和背景)位于阈值对角线的两侧,而垂直于对角线的两个区域主要包含边缘信息和噪声。点灰度值为 i 且其邻域灰度平均值为 j 时的像素点个数, M×N 表示图像的像素大小。最大熵法是由 Kapur 于 1985 年所提出的, 该方法的阈值选取标准取决于。, 而图像中的熵能够反映图像的平均信息量, 表示图像灰度。

2024-05-15 23:53:56 921

原创 【智能算法】清道夫优化算法(CFO)原理及实现

2024年,W Zhang受到清道夫自然行为启发,提出了清道夫优化算法(Cleaner Fish Optimization Algorithm, CFO)。CFO模拟了清道夫在进行“清洁服务”时的移动行为,以及雌鱼变性为雄鱼的行为,并定义了两种位置更新模式。而在下一代中,前三分之二的个体采用目标追踪更新模式,其他个体采用性别转换更新模式。在鱼类群体中,当雄性死亡时,雌性可能会改变性别,成为新的雄性。表示清道夫的清洁能力,也表示随着迭代次数的增加,清道夫的清洁能力下降。CFO 提出了两代循环策略:分别是。

2024-05-15 23:39:06 932

原创 【智能算法应用】基于冠豪猪优化算法的二维最大熵图像阈值分割

二维熵图像分割方法不仅侧重于考虑每个像素的灰度值,还细致地考察了像素邻域内的灰度分布,从而为图像分割提供了更丰富的信息。通过设置灰度阈值 t 和邻域阈值 s,图像被细分为四个区域:两个主要区域(目标和背景)位于阈值对角线的两侧,而垂直于对角线的两个区域主要包含边缘信息和噪声。点灰度值为 i 且其邻域灰度平均值为 j 时的像素点个数, M×N 表示图像的像素大小。最大熵法是由 Kapur 于 1985 年所提出的, 该方法的阈值选取标准取决于。, 而图像中的熵能够反映图像的平均信息量, 表示图像灰度。

2024-05-14 22:51:25 1003

原创 【智能算法】河马优化算法(HO)原理及实现

大多数未成熟的河马都靠近它们的母亲,但由于好奇,有时未成熟的河马会与兽群分开或远离它们的母亲。当r6大于0.5时,表示未成熟的河马已经离开了母亲,但仍在兽群内或附近(式7),否则表示未成熟的河马已经离开了兽群。在河马的社交结构中,雌性通常被置于雄性的保护之下。随着成年雄性河马的成长,它们往往会被领导雄性赶出原有的群体,这些雄性河马则需要通过吸引雌性或与其他成熟雄性竞争以建立自己的领导地位。如果F HippoR i大于F,则表示该河马已被猎杀,将有另一头河马在群中取而代之,否则猎人逃跑,该河马将返回群中。

2024-05-14 13:00:20 1030

原创 【智能算法】最优捕食算法(OFA)原理及实现

OFA灵感来源于动物的觅食行为,特别是它们如何有效地定位并捕捉到猎物。这种算法模拟动物在自然界中寻找食物的策略,以解决全局优化问题。在动物界,觅食者通常能够通过先天或经验学到的技能,识别出能够提供丰富猎物的最佳地点。2017年,GY Zhu受到动物行为生态学理论启发,提出了最优捕食算法(Optimal Foraging Algorithm, OFA)。

2024-05-12 16:12:49 690

原创 【智能算法应用】遗传粒子群算法(GA-PSO)求解选址问题

经典PSO算法用于连续空间优化问题,选址问题作为组合优化问题,需要在离散空间中求解。因此,考虑遗传算法(Genetic Algorithm,GA)交叉算子和变异算子,形成。[1] 史峰, 王辉, 郁磊. MATLAB 智能算法 30 个案例分析[J]. 2011.a.粒子群中每个粒子i与Gbest,Pbest交叉;b.更新Gbest,Pbest;

2024-05-12 15:19:57 308

原创 【智能算法】鹭鹰优化算法(SBOA)原理及实现

SBOA生存需要不断地寻找猎物和躲避捕食者的追捕,探索阶段模拟鹭鹰捕食蛇,而开发阶段模拟鹭鹰逃离捕食者。在这个阶段,鹭鹰观察环境,选择最合适的方式到达安全的避难所。2024年,Y Fu受到自然界中鹭鹰生存行为启发,提出了鹭鹰优化算法(Secretary Bird Optimization Algorithm, SBOA)。当遇到这些威胁时,鹭鹰通常采用各种逃避策略来保护自己或它们的食物。这些策略大致可以分为两大类,第一种策略是逃跑或快速奔跑,第二种策略是伪装。

2024-05-11 16:30:19 859

原创 【智能算法应用】基于果蝇算法-BP回归预测(FOA-BP)

数据集样本特征数为13,适应度函数设计为:fitnesserrortest​1。

2024-05-11 15:34:41 566

原创 【智能算法】正切搜索算法(TSA)原理及实现

TSA在早期采用较大的步长,随着搜索过程的进行,步长在迭代过程中呈非线性减小。h接近于/2会使正切值变大,得到的解会远离当前解,而h接近于0会使正切函数的值变小,得到的解会接近当前解。在强化搜索中,TSA首先进行随机局部行走,然后将得到的解中的一些变量替换为当前最优解中对应变量的值。对于大于4的问题,替换变量的比例等于20%,对于小于或等于4个变量的问题,替换变量的比例等于50%。TSAT基于正切函数的数学模型将给定的解决方案移动到更好的解决方案,提出了切线飞线函数,其具有平衡开发与勘探搜索的优点。

2024-05-10 21:50:24 1082

原创 【智能算法应用】基于麻雀搜索算法-支持向量回归预测(SSA-SVR)

支持向量机(SVM)是针对二分类问题,支持向量回归(SVR)基于SVM应用与回归问题。SVR回归与SVM分类的区别在于SVR的样本点只有一类,SVM是要使到超平面最近的样本点的“距离”最大,SVR则是要使到超平面最远的样本点的“距离”最小。gamma值越小,支持向量越多。[2] 徐炜君.考虑主环境因素的GWO-SVR风电功率超短期预测[J].电子设计工程,2023,31(15):150-156.,它控制着模型的复杂度和训练数据的适应程度。c是惩罚系数,即对误差的宽容度。c越高容易过拟合,c越小容易欠拟合。

2024-05-10 20:27:02 1377

原创 【智能算法】人工原生动物优化算法(APO)原理及实现

其中𝑋𝑛𝑒𝑤和𝑋分别表示𝑖th原生动物的更新位置和原始位置。𝑓表示觅食因子,𝑛𝑝表示外部因素之间的邻居对个数,𝑛𝑝𝑚𝑎为𝑛𝑝的最大值。当原生动物处于休眠状态时,它会被新产生的原生动物所取代,以保持恒定的种群数量。内部因素被认为是原生动物的觅食特征,而外部因素被认为是环境影响,如物种碰撞和竞争行为。其中𝑋𝑛𝑒𝑎𝑟是附近的位置,“±”表示𝑋𝑛𝑒𝑎𝑟可能与𝑖th原生动物在不同的方向。其中pf为原生动物种群中休眠和繁殖的比例分数,pah表示自养和异养行为的概率,pdr表示休眠和繁殖的概率。

2024-05-09 22:11:03 802

原创 【智能算法】雪消融优化算法(SAO)原理及实现

通过将种群分为两个子种群,一种专注于探索(寻找新的可能解),另一种专注于开发(优化已知解),这种双重人口机制有效地模拟了自然选择中的变异与遗传两大关键因素。当雪通过融化行为转化为液态水时,搜索个体被鼓励围绕当前最佳解决方案开发高质量的解决方案,而不是在解决方案空间中扩展高度分散的特征。布朗运动的一维分布以及在二维和三维搜索空间中的轨迹如图,布朗运动利用动态和均匀的步长,可以探索搜索空间中的一些潜在区域。SAO模拟了雪的升华和融化行为,在融化过程中,雪转化为液态水,而雪可以通过升华直接转化为蒸汽。

2024-05-08 20:54:07 1049

原创 【智能算法应用】基于麻雀搜索算法的二维最大熵图像阈值分割

二维熵图像分割方法不仅侧重于考虑每个像素的灰度值,还细致地考察了像素邻域内的灰度分布,从而为图像分割提供了更丰富的信息。通过设置灰度阈值 t 和邻域阈值 s,图像被细分为四个区域:两个主要区域(目标和背景)位于阈值对角线的两侧,而垂直于对角线的两个区域主要包含边缘信息和噪声。点灰度值为 i 且其邻域灰度平均值为 j 时的像素点个数, M×N 表示图像的像素大小。最大熵法是由 Kapur 于 1985 年所提出的, 该方法的阈值选取标准取决于。, 而图像中的熵能够反映图像的平均信息量, 表示图像灰度。

2024-05-08 20:08:25 1043 2

原创 【智能算法应用】人类进化优化算法求解非线性方程组问题

【代码】【智能算法应用】人类进化优化算法求解非线性方程组问题。

2024-05-07 23:18:39 518

原创 【智能算法】人类进化优化算法(HEOA)原理及实现

这种技术利用人眼在观察图像时,通过整体和局部特征的组合来感知图像,从而对局部信息的丢失相对不敏感。将这一概念扩展到高维数据,该方法在保持元数据的关键特征的同时,将搜索分布在多个区域,以提高搜索效率。在人类发展阶段,人口被分类为领导者、探索者、追随者和失败者,每个人都使用不同的搜索策略。在人类发展的各个阶段,HEOA将人类社会分为四种不同的角色:领导者、探索者、追随者和失败者。拥有丰富的知识,通常位于最优区域。在进行的实验中,预适应前40%的个体被指定为领导者。坚持最具适应性的领导者的指导,跟随他们的脚步。

2024-05-07 21:07:45 1187

原创 【智能算法应用】混合粒子群算法求解VRPTW问题

考虑遗传算法(Genetic Algorithm,GA)交叉算子和变异算子,形成混合粒子群算法(Hybrid Particle Swarm Optimization, HPSO)。VRPTW问题基于VRP问题,每个客户点都有一个时间窗口,表示可以在某个时间范围内访问。目标是在满足时间窗口和车辆容量限制的情况下,最小化总行驶距离或成本。,0 表示配送中心, 大于 0 的整数表示客户点编号。,涉及如何有效地分配一组车辆去访问多个客户点,并在满足约束条件的情况下最小化总行驶距离或成本。

2024-05-06 21:43:15 435

Matlab求解Markov链模型转移概率矩阵P

Matlab求解Markov链模型转移概率矩阵P

2023-07-16

Matalb 非线性波浪理论-Stokes波超越方程参数求解

Matlab代码:非线性波浪理论-Stokes波超越方程参数求解

2023-07-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除