111. Minimum & Maximum Depth of Binary Tree

只是一篇寻找二叉树的最小和最大深度问题的文章,就当是学习笔记。

  • Minimum Depth of Binary Tree
  • Maximum Depth of Binary Tree

Minimum Depth of Binary Tree

Given a binary tree, find its minimum depth.
The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.

求解二叉树的最小深度的问题比较好的方法就是递归了,递归的时候使用广度优先搜索
以下是我的代码:

class Solution {
public:
    int minDepth(TreeNode* root) {
        if(root == NULL)
            return 0;
        else if (root -> left == NULL && 
                root -> right == NULL)
            return 1;
        else if (root -> left != NULL && 
                root -> right == NULL)
            return 1 + minDepth(root -> left);
        else if (root -> left == NULL && 
                root -> right != NULL)
            return 1 + minDepth(root -> right);
        else
            return min(1 + minDepth(root -> left), 
                1 + minDepth(root -> right));
    }
};

总的来说实现的思路并不复杂,只要左右子节点都为空就返回1,如果左子节点为空那就继续往右搜索,如果右子节点为空那就继续往继续往左搜索,如果左右子节点都不为空那么就左右都搜索,结果返回深度比较浅的那个就好

Maximum Depth of Binary Tree

Given a binary tree, find its maximum depth.
The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node

最大深度的实现是最小深度的类似,只需要将判断条件更改一下就好了

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    int maxDepth(TreeNode* root) {
        if(root == NULL)
            return 0;
        else if (root -> left == NULL && 
                root -> right == NULL)
            return 1;
        else if (root -> left == NULL && 
                root -> right != NULL)
            return 1 + maxDepth(root -> right);
        else if (root -> right == NULL && 
                root -> left != NULL)
            return 1 + maxDepth(root -> left);
        else
            return max(1 + maxDepth(root -> left), 
                1 + maxDepth(root -> right));
    }
};

由于使用了递归的方法,暂时我还不能分析这个算法的时间复杂度,等后面再来更新吧!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值