目录
1、解耦
首先我们看下耦合较高的情况,谁愿意负责A系统?难道被累死么?
负责A系统的大兄弟自作主张引入MQ消息队列后,我管你老王、老张还是老李要什么数据,我放在MQ中,你们要就从MQ中拿

2、接口异步处理
首先来看下没有引入MQ时候,假设打开一个网页随意点一下都需要一秒才返回数据,才响应出来
因为,Ajax请求到系统服务,服务响应给用户的时间为:消息队列耗时+系统服务耗时;

3、流量削峰:
ok,没有采用MQ,用户并发访问直接爆了服务器,服务器强悍不爆,你硬件读写能跟得上?Mysql并发2000就要GG,直接罢工了;
引入MQ,你干不完是吧,先存起来,等你慢慢干;
通常用于 类似于双11 等并发访问较大时候;
秒杀活动,也要用到;
4、问题
1、消息的顺序性MQ怎么保证?
在MQ的模型中,顺序需要由3个阶段去保障:
消息被发送时保持顺序
消息被存储时保持和发送的顺序一致
消息被消费时保持和存储的顺序一致
发送时保持顺序意味着对于有顺序要求的消息,用户应该在同一个线程中采用同步的方式发送。存储保持和发送的顺序一致则要求在同一线程中被发送出来的消息A和B,存储时在空间上A一定在B之前。而消费保持和存储一致则要求消息A、B到达Consumer之后必须按照先A后B的顺序被处理。
2、缓冲和削峰:
上游数据时有突发流量,下游可能扛不住,或者下游没有足够多的机器来保证冗余,kafka在中间可以起到一个缓冲的作用,把消息暂存在kafka中,下游服务就可以按照自己的节奏进行慢慢处理。
3、什么情况下一个 broker 会从 isr中踢出去
leader会维护一个与其基本保持同步的Replica列表,该列表称为ISR(in-sync Replica),每个Partition都会有一个ISR,而且是由leader动态维护 ,如果一个follower比一个leader落后太多,或者超过一定时间未发起数据复制请求,则leader将其重ISR中移除 。
4、kafka producer如何优化打入速度
增加线程
提高 batch.size
增加更多 producer 实例
增加 partition 数
设置 acks=-1 时,如果延迟增大:可以增大 num.replica.fetchers(follower 同步数据的线程数)来调解;
跨数据中心的传输:增加 socket 缓冲区设置以及 OS tcp 缓冲区设置。
5、为什么Kafka不支持读写分离?
在 Kafka 中,生产者写入消息、消费者读取消息的操作都是与 leader 副本进行交互的,从 而实现的是一种主写主读的生产消费模型。
Kafka 并不支持主写从读,因为主写从读有 2 个很明 显的缺点:
(1)数据一致性问题。数据从主节点转到从节点必然会有一个延时的时间窗口,这个时间 窗口会导致主从节点之间的数据不一致。某一时刻,在主节点和从节点中 A 数据的值都为 X, 之后将主节点中 A 的值修改为 Y,那么在这个变更通知到从节点之前,应用读取从节点中的 A 数据的值并不为最新的 Y,由此便产生了数据不一致的问题。
(2)延时问题。类似 Redis 这种组件,数据从写入主节点到同步至从节点中的过程需要经 历网络→主节点内存→网络→从节点内存这几个阶段,整个过程会耗费一定的时间。而在 Kafka 中,主从同步会比 Redis 更加耗时,它需要经历网络→主节点内存→主节点磁盘→网络→从节 点内存→从节点磁盘这几个阶段。对延时敏感的应用而言,主写从读的功能并不太适用。