利用NLTK+sklearn进行垃圾邮件分类

本文介绍如何结合NLTK进行数据预处理和特征提取,利用sklearn进行机器学习训练,以实现垃圾邮件分类。实验中,作者尝试多种机器学习算法,并评估了分类效果。数据集来源于UCI机器学习库。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

利用NLTK来进行数据处理和提取特征,再交由sklearn进行机器学习训练分类器,尝试了多个机器学习算法并评价分类性能。

训练用数据集是:https://archive.ics.uci.edu/ml/datasets/sms+spam+collection ,可下载使用。也可以用自己的数据集,但一定要做成一个样本一行,每个样本先是标签spam/ham,空一格然后是邮件内容 的形式。

上代码:

import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
import csv
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn import tree
from sklearn.linear_model import SGDClassifier
from sklearn.svm import LinearSVC
from sklearn.ensemble import RandomForestClassifier

#预处理
def preprocessing(text):
    #text=text.decode("utf-8")
    tokens=[word for sent in nl
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值