自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(42)
  • 资源 (8)
  • 收藏
  • 关注

原创 构建AI智能体:四十二、使用 Qwen-Agent Assistant 调用高德 API 实现天气查询

本文介绍了如何将Qwen-Agent智能助手与高德天气API集成,构建一个能响应自然语言查询的天气服务系统。主要内容包括:高德天气API的注册、参数配置及数据解析方法;Qwen-Agent框架中Assistant类的核心功能和使用方式;通过FunctionCall和Assistant两种实现方式的对比;完整示例展示了从工具定义、API集成到交互界面开发的实现过程。该系统支持终端和Web两种交互模式,可扩展为智能客服、物联网控制等场景,为开发者提供了大模型与实际API服务结合的典型范例。

2025-09-23 23:30:11 439

原创 构建AI智能体:四十一、大模型思维链提示工程:技术原理与行业应用案例分析

本文介绍了思维链提示技术及其应用。思维链提示是一种引导大模型进行逐步推理的提示工程技术,通过结构化提示模拟人类解决问题的逻辑分析路径,使模型能够显式化中间推理步骤,从而提升推理准确性与可解释性。文章详细阐述了思维链提示的关键特征(步骤可解释性、逻辑链条完整性、问题分解能力)和工作原理,并通过数学推理、逻辑分析和多轮复杂问题三个案例展示了其具体应用流程。该技术在教育辅导、商业决策和科研分析等领域具有重要价值,能够突破传统大模型的黑箱推理瓶颈,提高AI系统的决策透明度和可靠性。

2025-09-22 23:34:54 818

原创 构建AI智能体:四十、K-Means++与RAG的融合创新:智能聚类与检索增强生成的深度应用

KMeans++算法优化RAG系统性能研究 本文探讨了KMeans++算法与检索增强生成(RAG)系统的融合应用。研究针对传统RAG系统在大规模知识库处理中的效率瓶颈,提出采用KMeans++聚类算法构建先聚类后检索的二级优化架构。通过改进初始中心点选择策略,KMeans++显著提升了文本聚类的稳定性和质量,将高维文本嵌入按语义相似性划分为独立分区。实验证明,该方法有效解决了全局检索噪声干扰、高维嵌入存储压力等问题,同时通过Python可视化演示了算法动态运行过程。

2025-09-21 22:16:02 1262

原创 构建AI智能体:三十九、中文新闻智能分类:K-Means聚类与Qwen主题生成的融合应用

K-Means作为最经典和广泛使用的聚类算法,以其简单性和效率在数据科学中占据重要地位。尽管有其局限性,但通过合理的初始化方法、参数调优和与大模型的结合,K-Means仍然能够解决许多实际聚类问题。与大型语言模型的结合代表了现代AI应用的一个重要方向,其中K-Means负责高效处理和大规模模式识别,而大模型负责深度的语义理解和内容生成,二者优势互补,构建出更加智能和高效的AI系统。

2025-09-20 23:42:27 1360

原创 构建AI智能体:三十八、告别“冷启动”:看大模型如何解决推荐系统的世纪难题

协同过滤是推荐系统中广泛使用的技术,其核心思想是利用用户行为数据发现相似用户或物品进行推荐。摘要包括:1)协同过滤基于用户历史行为数据,通过计算相似度(如余弦相似度、皮尔逊相关系数)预测用户偏好;2)主要分为基于用户(寻找相似用户群体)和基于物品(发现相似物品)两种方法;3)面临冷启动、数据稀疏性等挑战,可通过混合推荐(结合内容特征)和矩阵分解等技术解决;4)典型应用包括电商猜你喜欢和流媒体推荐;5)结合大语言模型可增强语义理解能力,提升推荐准确性。

2025-09-19 23:07:47 1199

原创 构建AI智能体:三十七、从非结构化文本到结构化知识:基于AI的医疗知识图谱构建与探索

知识图谱是一种用图结构表示实体及其关系的技术,通过三元组(主体-关系-客体)构建语义网络。文章以医疗领域为例,详细介绍了知识图谱的构建流程:数据预处理、实体识别、关系抽取、知识融合、存储与可视化等步骤。知识图谱可应用于智能问答、辅助诊断、药物研发等场景,其结构化特性可弥补大语言模型的不足,二者结合能提升AI系统的准确性和可解释性。文章还展示了基于大模型的医疗知识图谱构建代码示例,涵盖实体识别、关系抽取、图谱存储和智能问答等核心功能,体现了知识图谱在专业领域的实用价值。

2025-09-18 15:05:36 1099

原创 构建AI智能体:三十六、决策树的核心机制(二):抽丝剥茧简化专业术语推理最佳分裂点

本文深入探讨了决策树的核心机制,重点分析了最佳分裂点的确定方法。通过鸢尾花分类案例,详细解析了基尼不纯度、加权平均基尼不纯度和信息增益等关键指标的计算过程。文章展示了决策树如何通过穷举搜索找到能最大程度降低不纯度的特征阈值(如花瓣宽度1.65cm),并解释了不同随机种子对分裂点选择的影响。决策树通过一系列if-else问题构建分类模型,其核心是追求节点纯度最大化,采用贪婪算法在每个节点选择信息增益最大的分裂方案。这种机制使决策树既直观又强大,但也需要注意过拟合问题。

2025-09-17 20:32:15 1225 1

原创 构建AI智能体:三十五、决策树的核心机制(一):刨根问底鸢尾花分类中的参数推理计算

本文介绍了决策树算法的基本原理和应用。决策树通过一系列特征判断(如西瓜的纹路、声音)进行分类,其结构包括根节点、内部节点、叶节点和分支。算法通过计算信息增益或基尼不纯度选择最佳分裂特征,构建过程采用递归方式。以鸢尾花分类为例,展示了如何用Python实现决策树模型,并分析了节点参数(样本量、基尼值、类别分布)的含义。决策树具有直观易懂的优点,但也容易过拟合。文章强调理解决策树是学习更复杂算法的基础,为后续深入讲解分裂点计算做铺垫。

2025-09-16 23:23:03 1101 1

原创 构建AI智能体:三十四、LangChain SQLDatabaseToolkit终极指南:架构、优势与最佳实践

SQLDatabaseToolkit 是 LangChain 框架中的一个核心组件,它不属于一个独立的软件,而是一个工具箱或工具集。它的核心目的是为大语言模型提供与 SQL 数据库进行交互的能力,将大模型的自然语言理解能力与数据库的精准数据存储和检索能力结合起来。它极大地降低了通过自然语言访问和操作 SQL 数据库的门槛,是构建基于 LLM 的数据驱动应用的关键组件之一。

2025-09-15 15:36:34 964 1

原创 构建AI智能体:三十三、LangChain LCEL深度解析:基于Runnable协议的声明式编程新范式

本文介绍了LangChain表达式语言(LCEL)的核心概念及其优势。LCEL通过Runnable协议和管道操作符(|)提供了一种声明式、模块化的方式来构建AI应用工作流。相比传统SequentialChain,LCEL具有更简洁的语法、更强的组合性和统一调用接口,支持流式传输、批量处理等高级功能。文章通过对比示例展示了LCEL如何简化Prompt模板、LLM模型和输出解析器的组合过程,并演示了复杂链的构建方法。LCEL使开发者能够像搭积木一样灵活组合各种组件,同时自动获得生产级应用所需的功能特性

2025-09-14 08:07:09 1301 1

原创 构建AI智能体:三十二、LangChain智能体:打造会使用工具(Tools)、有记忆(Memory)的AI助手

文章摘要:本文系统介绍了LangChain框架的核心组件与工作机制。LangChain是一个为大语言模型应用开发设计的开源框架,包含模型层、提示管理、处理链、记忆系统和代理机制五大核心组件。重点分析了Tools系统、Memory系统和ReAct框架的协同工作机制:Tools扩展模型能力,Memory存储对话历史,ReAct框架实现智能推理与行动决策。通过多工具智能体示例,展示了三者如何协同完成复杂任务(如计算年龄平方根、网页内容提取等)。

2025-09-13 14:54:53 948

原创 构建AI智能体:三十一、AI医疗场景实践:医学知识精准问答+临床智能辅助决策CDSS

本文探讨了医疗AI从传统问答系统向智能辅助决策的演进过程。传统系统依赖规则和模板,存在维护成本高、灵活性差等局限。现代系统通过大语言模型、向量检索等技术,构建了医学知识精准问答和临床决策支持(CDSS)两大应用场景。前者作为智能百科全书,能理解自然语言问题并从权威知识库生成准确回答;后者则能分析患者数据,提供个性化诊疗建议。文章详细介绍了基于RAG(检索增强生成)架构的系统实现,包括FAISS向量数据库构建和Qwen大模型调用,并强调了医学AI系统的专业性、安全性和合规要求。

2025-09-12 18:41:03 1232

原创 构建AI智能体:三十、精雕细琢:驾驭关键词的细微差别,解锁高质量提示词编排与视觉表征

《AI图像生成中的提示词工程艺术》摘要:文章系统阐述了人工智能图像生成中的提示词工程(Prompt Engineering)技术。通过具体案例对比,展示了细微的提示词差异如何导致图像质量的巨大分野,详细解析了提示词的核心要素、语法结构及编排方法。文章提出专业级提示词的多维描述矩阵和权重控制语法,强调精准描述与AI沟通的重要性。同时指出,提示词工程是艺术与科学的结合,需要不断练习和实验才能掌握这项数字时代的关键创造力技能。

2025-09-11 12:34:03 1138

原创 构建AI智能体:二十九、Text2SQL:告别繁琐SQL!用大模型自助生成数据报表

Text2SQL技术通过自然语言处理将用户查询转换为SQL语句,解决企业数据查询效率低下的痛点。该技术包含语义理解、模式对齐、SQL生成和优化等核心处理过程,核心组件包括自然语言理解模块、Schema管理模块和SQL生成模块。文章介绍了闭源和开源模型的选择策略,并提供了基于Function Calling的Text2SQL实现示例,展示如何安全高效地将自然语言转换为数据库查询。

2025-09-10 21:12:17 1104

原创 构建AI智能体:二十八、大语言模型BERT:原理、应用结合日常场景实践全面解析

BERT是谷歌2018年推出的革命性自然语言处理模型,采用Transformer编码器架构和"预训练-微调"范式。其核心创新在于双向上下文理解和掩码语言建模,能有效处理一词多义和复杂语义关系。BERT通过多层自注意力机制构建深度表示,输入融合词嵌入、位置嵌入和段落嵌入,输出包含丰富上下文信息的向量。主要应用包括文本分类、命名实体识别、问答系统等,在搜索优化、智能客服、内容推荐等领域发挥重要作用。

2025-09-09 23:14:10 1313

原创 构建AI智能体:二十七、大模型如何“考出好成绩”:详解内在评测与外在评测方法

本文系统介绍了语言模型评测的两种主要方法:内在评测和外在评测。内在评测聚焦模型基础语言能力,核心指标困惑度(PPL)反映模型预测准确性,计算过程包括条件概率、对数概率和及指数转换。外在评测通过具体任务表现评估模型实用性,采用多层级评估策略(精确匹配、变体匹配、关键词分析和语义评估)。文章详细阐述了评测流程、指标计算方法和代码实现,强调两者结合使用的重要性:内在评测看基本功,外在评测检验实战能力。评测应持续进行,为模型选型、优化部署提供客观依据,同时关注公平性和领域适应性。

2025-09-08 21:45:09 1369

原创 构建AI智能体:二十六、语言模型的“解码策略”:一文读懂AI文本生成的采样方法

本文探讨了AI文本生成中的采样方法,这些方法决定了AI如何选择候选词来生成文本。文章介绍了两种主要方法:确定性方法(贪心算法和束搜索)和随机采样方法(基础随机采样、温度采样、Top-k采样和Top-p采样)。贪心算法每次选择概率最高的词,生成结果可靠但缺乏创意;束搜索保留多条候选路径,适合需要准确性的任务。随机采样方法则通过引入随机性增加多样性,其中温度采样通过调整温度参数控制创意的随机程度,Top-p采样则动态选择候选词集合,是目前创造性任务的首选方法。

2025-09-07 11:07:41 1435 1

原创 构建AI智能体:二十五、智能时代的知识库全链路优化:从构建、检索到生命周期健康管理

《智能时代的知识库构建与优化》摘要: 本文系统阐述了AI时代企业知识库的智能化转型路径。传统知识库存在检索效率低、更新滞后等痛点,而融合大语言模型与向量数据库的新一代知识库能实现语义理解、智能问答和动态优化。文章提出四大核心方法:1)基于Qwen模型的问题生成技术,扩展检索入口;2)混合检索策略(BM25+向量搜索)提升准确率;3)从对话记录自动沉淀隐性知识;4)建立覆盖度、时效性等量化指标体系。通过版本管理、A/B测试等技术实现知识库的科学迭代,最终构建具备自主学习能力的知识大脑。

2025-09-06 08:50:45 1150

原创 构建AI智能体:二十四、RAG的高效召回方法论:提升RAG系统召回率的三大策略实践

本文探讨了检索增强生成(RAG)系统中的高效召回技术。RAG系统通过检索相关文档增强大语言模型的回答质量,但性能受制于"垃圾进,垃圾出"原则。为提高召回效果,文章重点分析了三种方法:Small-to-Big通过大小文本块映射兼顾检索精度与上下文丰富度;索引扩展(如HyDE)利用大模型生成假设文档来优化检索;双向改写弥合用户查询与文档表述的差异。这些方法从不同角度解决了RAG系统中的语义鸿沟、词汇不匹配等核心问题,可单独或组合使用。高效召回技术能显著提升RAG系统的回答质量和效率。

2025-09-05 12:51:11 1247

原创 构建AI智能体:二十三、RAG超越语义搜索:如何用Rerank模型实现检索精度的大幅提升

本文介绍了重排序(Rerank)技术在检索增强生成(RAG)系统中的应用。Rerank作为初始检索和最终生成之间的关键环节,通过交叉编码器对初步检索结果进行精细化排序,筛选出最相关的少量文档提供给大语言模型。相比Embedding模型,Rerank能更精准理解查询-文档的语义关系,显著提高答案质量,降低Token消耗。文章详细比较了BGE-Rerank和CohereRerank等主流模型,并通过代码示例展示了Rerank在解决歧义查询(如区分苹果公司和水果)上的优势。

2025-09-04 11:47:56 1445

原创 构建AI智能体:二十二、双剑合璧:Qwen系列双模型在文生文、文生图中的搭配应用

使用Gradio构建的一个演示界面,该界面将展示如何使用Qwen-Turbo生成提示词,然后使用Qwen-Image生成图像。 我们将按照之前的设计,将流程分为两个主要步骤:先生成提示词,然后生成图像。在提示词生成成功之前,直接生成图像将会给出提示先生成提示词。

2025-09-03 15:46:01 1070

原创 构建AI智能体:二十一、精准检索“翻译官”:qwen-turbo在RAG Query改写中的最佳实践

因为用户的自然提问方式与知识库的客观组织方式天生存在不可调和的差异。如果不进行改写,直接将原始查询用于检索,就如同让一个不懂检索的人自己去漫无目的地查字典,结果往往是找不到、找错了或找到的没法用。Query 改写是保障 RAG 系统可靠性、准确性和可用性的“第一道防线”和“核心基础设施”。它通过一系列技术手段,将用户的意图“翻译”成检索器能高效理解的语言,从而确保后续步骤能在一个高质量的基础上进行。

2025-09-02 10:27:14 757

原创 构建AI智能体:二十、妙笔生花:Gradio集成DashScope Qwen-Image模型实现文生图

本文介绍了一个基于Gradio和阿里云通义千问Qwen-Image模型的文生图应用。该应用通过简洁的Web界面实现文本生成图像功能,支持多种风格(3D卡通、动漫、油画等)和尺寸选择,并包含负面提示词功能。文章详细解析了代码结构,包括API调用封装、参数映射、错误处理等核心功能模块,同时提供了丰富的示例提示词和生成效果展示。该工具适合探索AI图像生成能力,通过调整提示词和参数可优化生成效果。

2025-09-01 13:58:09 1623

原创 构建AI智能体:十九、优化 RAG 检索精度:深入解析 RAG 中的五种高级切片策略

本文详细介绍了RAG(检索增强生成)系统中的文本切片策略。RAG切片是将长文档分割为语义完整的小块,以便AI模型高效检索和使用知识。文章分析了五种切片方法:改进固定长度切片(平衡效率与语义)、语义切片(基于嵌入相似度)、LLM语义切片(利用大模型智能分割)、层次切片(多粒度结构)和滑动窗口切片(高重叠上下文)。作者建议根据文档类型和需求选择策略,如通用文档用固定切片,长文档用层次切片,高精度场景用语义切片。切片质量直接影响RAG系统的检索效果和生成答案的准确性。

2025-08-31 08:26:59 902

原创 构建AI智能体:十八、解密LangChain中的RAG架构:让AI模型突破局限学会“翻书”答题

本文深入探讨了如何利用LangChain框架实现RAG(检索增强生成)架构,构建智能问答系统。文章首先介绍了RAG技术解决大模型知识更新和准确性问题的原理,以及LangChain作为开发框架提供的模块化组件。详细解析了LangChain的核心模块(模型、提示、索引、链等)和四种ChainType(stuff、map_reduce、refine、map_rerank)的特点与适用场景。通过一个完整的代码示例,展示了如何结合DeepSeek模型和FAISS向量数据库处理PDF文档,实现本地知识库问答功能

2025-08-30 16:08:47 1592

原创 构建AI智能体:十七、大模型的幻觉难题:RAG 解决AI才华横溢却胡言乱语的弊病

RAG(检索增强生成)是一种结合信息检索与大型语言模型的技术,旨在解决LLM的"幻觉"问题。其核心流程包括:离线处理阶段(知识库构建)和在线处理阶段(用户查询应答)。通过将外部知识源转换为向量存入数据库,当用户提问时,系统会检索相关内容并增强提示,再由LLM生成准确答案。RAG技术显著提升了AI在专业领域的可靠性,适用于智能客服、企业知识管理、内容创作等场景。尽管面临检索精度、多模态处理等挑战,RAG仍是AI实用化的重要突破方向。

2025-08-29 15:45:01 1036

原创 构建AI智能体:十六、构建本地化AI应用:基于ModelScope与向量数据库的文本向量化

本文介绍了如何利用本地化部署的轻量级文本嵌入模型实现语义搜索。重点讲解了两种高效模型paraphrase-MiniLM-L6-v2和all-MiniLM-L6-v2的特点,它们通过知识蒸馏技术实现高质量语义表示,且体积小、速度快。文章详细演示了从ModelScope下载模型到本地、使用sentence-transformers库生成文本向量、构建FAISS索引进行相似性搜索的完整流程。通过Python代码示例展示了如何实现文档添加、查询处理和索引持久化功能,为构建本地化的语义搜索系统提供了实用解决方案。

2025-08-28 23:20:24 974

原创 构建AI智能体:十五、超越关键词搜索:向量数据库如何解锁语义理解新纪元

摘要:向量数据库是专为处理非结构化数据(如文本、图像、音频)设计的新型数据库,通过将数据转换为高维向量并建立索引,实现高效的语义相似性搜索。与传统数据库不同,它不依赖精确匹配,而是采用近似最近邻(ANN)算法快速检索相似内容。文章介绍了向量数据库的核心原理(如HNSW、IVF-PQ索引技术)、常见产品(Pinecone、Milvus等),并通过代码示例演示了如何构建基于FAISS的检索系统。作为AI基础设施的关键组件,向量数据库使计算机能够理解非结构化数据

2025-08-27 22:34:37 1194

原创 构建AI智能体:十四、从“计算”到“洞察”:AI大模型如何让时间序列数据“开口说话”

文章摘要:本文系统介绍了时间序列分析的核心内容。首先探讨了学习必要性,指出时间序列对应用型工程师是进阶技能,对算法研究者则是必备知识。其次解析了时间序列的定义与核心概念,包括趋势、季节性和残差三大成分。重点讲解了Holt-Winters和ARIMA两类经典模型:Holt-Winters通过指数平滑处理趋势和季节性,适合短期预测;ARIMA则整合自回归、差分和移动平均,适用于更复杂的时间序列。文章通过Python代码示例展示了模型的实际应用,包括数据预处理、参数优化(AIC准则)和预测可视化。

2025-08-26 21:20:26 841

原创 构建AI智能体:十三、大数据下的“搭积木”:N-Gram 如何实现更智能的语义搜索

N-gram是一种基于马尔可夫假设的概率语言模型,通过计算文本中连续N个词(或字符)的出现概率来建模语言序列。摘要要点:1. 核心概念:N-gram将长序列概率分解为短序列乘积,Unigram、Bigram和Trigram分别考虑1/2/3个连续词;2. 概率计算:基于语料库计数,使用最大似然估计计算条件概率;3. 平滑技术:通过加一平滑等方法解决未出现序列的零概率问题;4. 典型应用:文本生成、输入法预测、语法检查等。尽管被深度学习模型超越,N-gram仍因其轻量和可解释性在特定场景发挥作用。

2025-08-25 22:05:13 1253

原创 构建AI智能体:十二、给词语绘制地图:Embedding如何构建机器的认知空间

本文介绍了Embedding技术如何将高维稀疏数据转换为低维稠密向量,使计算机能够理解语义信息。文章从One-Hot编码的局限性入手,解释了Embedding的核心原理和优势,详细介绍了Word2Vec的CBOW和Skip-Gram两种训练方法,并提供了中文词向量的训练示例。通过可视化展示,说明Embedding能捕获语义关系,使相近词在向量空间中聚集。文章还探讨了Embedding的关键特性(语义相似性和线性类比关系)及其广泛应用(NLP、CV、推荐系统等)。

2025-08-24 23:23:08 1251

原创 构建AI智能体:十一、语义分析Gensim — 从文本处理到语义理解的奇妙之旅

Gensim是一个用于自然语言处理的Python库,主要用于从大量文本中发现隐藏主题、训练词向量和计算文档相似度。其核心功能包括:1)主题建模(如LDA),可自动识别文本主题;2)词向量训练(如Word2Vec),将词语转换为语义向量;3)高效的文本相似度计算。Gensim处理中文文本时需先进行分词等预处理,支持jieba等工具。该库具有高效可扩展的特点,适合处理大规模文本数据,可应用于信息检索、推荐系统等场景。通过调整参数和算法,用户可以获得更优的语义分析效果。

2025-08-23 21:22:36 993

原创 构建AI智能体:十、开箱即见 Gradio:大模型的“魔法画布”,让每一个想法清晰可见

Gradio是一个快速构建机器学习演示界面的Python库,能够将需要数天开发工作的模型展示缩短为几分钟的脚本编写。它通过简单的Python代码即可生成完整的Web应用界面,支持文本、图像、音频等多种交互组件,适用于模型展示、教学演示和原型测试等场景。文章详细介绍了Gradio的核心功能、基础语法和组件使用方法,并通过情感分析和聊天机器人两个实际案例展示了如何快速部署AI模型交互界面。Gradio大幅降低了将模型转化为可交互应用的门槛,使开发者能更专注于模型本身而非界面开发。

2025-08-22 16:58:13 1100

原创 构建AI智能体:九、AI数据科学NumPy — 不可不知、由点及面抽丝剥茧+趣味范例

NumPy是Python科学计算的核心库,提供高性能的多维数组对象和丰富运算工具。本文全面介绍了NumPy的核心功能:1. 性能优势:对比Python列表,NumPy数组运算速度快30倍(0.001567秒 vs 0.045234秒)2. 核心功能:- 数组创建:np.array()、np.zeros()、np.arange()等 数组操作:索引切片、形状变换、数学运算 广播机制:处理不同形状数组的运算 文件操作:np.savetxt()、np.load()

2025-08-21 09:25:28 1361

原创 构建AI智能体:八、AI新纪元:ModelScope魔法 — 本地搭建超酷的图片处理模型

ModelScope是由阿里巴巴达摩院推出的AI模型托管与服务平台,被称作AI模型的Github。它汇集了自然语言处理、计算机视觉、语音识别等领域的数千个高质量预训练模型,大幅降低了AI应用开发门槛。平台提供简化的Pipeline API,只需几行代码即可调用模型,并支持模型微调。与通义千问等单一AI产品不同,ModelScope是一个开放的模型生态系统,覆盖更广泛的应用场景。通过实际案例展示了其在人像卡通化、抠图、天空替换等方面的应用效果。

2025-08-20 17:27:26 1192

原创 构建AI智能体:七、Function Calling - 解锁大语言模型的实际行动力+案例解析

本文介绍了大语言模型(LLM)的Function Calling功能,它解决了LLM只能"说"不能"做"的局限性。Function Calling允许LLM通过结构化JSON请求调用外部函数,实现实际业务操作。文章详细解析了Function Calling的工作流程:开发者注册函数→用户提问→模型判断是否调用函数→执行函数→返回结果。通过一个天气查询的Python示例,展示了如何实现这一完整流程。重点强调了函数设计、参数校验、安全性和错误处理的重要性。

2025-08-19 08:02:14 1322

原创 构建AI智能体:六、体验Trae指定Qwen-Turbo模型自动生成问答系统

本文介绍了使用Trae编辑器结合Qwen-Turbo大模型快速构建智能问答系统的过程。通过AI编程工具自动生成前后端代码,实现了一个具备Web界面的聊天助手系统。文章详细展示了从参考代码分析、模型调用封装到界面样式优化的完整开发流程,并提供了生成的项目文件结构说明。实践表明,AI辅助编程能显著提升开发效率,但也需要开发者具备基础知识和调试能力来处理生成结果与预期不符的情况。这种结合AI工具的开发方式,为快速原型开发提供了新思路。

2025-08-18 11:08:17 1171

原创 构建AI智能体:五、Pandas常用函数介绍,CodeBuddy智能化处理Excel数据实例

摘要:本文介绍了Python数据分析库Pandas的核心功能,包括Series、DataFrame等数据结构的基本操作。重点讲解了数据查看、筛选、缺失值处理、分组聚合、排序和转置等常用方法,以及文件读写操作。通过员工信息表与绩效表合并的实例,演示了merge函数在数据整合中的应用,并展示了如何为现有数据添加新列并保存为Excel文件。文章还涉及numpy随机数生成等扩展知识点,为后续数据分析实践打下基础。

2025-08-17 09:51:57 1015

原创 构建AI智能体:四、工欲善其事,选择合适的AI编程利器:Cursor、CodeBuddy、Trae

本文介绍了三款AI编程工具:Cursor、CodeBuddy和Trae。Cursor是基于VSCode的AI原生编辑器,功能全面但收费较高;CodeBuddy是腾讯开发的轻量级插件,适合快速开发且支持离线使用;Trae由字节跳动推出,专注于代码理解和项目管理。三者各有优势:Cursor适合强交互场景,CodeBuddy重视隐私和效率,Trae擅长项目维护。文章建议开发者根据需求选择工具,可组合使用取长补短,同时提醒不要过度依赖AI工具而丧失核心竞争力。

2025-08-16 18:15:37 2065

原创 构建AI智能体:三、Prompt提示词工程:几句话让AI秒懂你心

摘要: Prompt(提示词)是与AI大模型交互的核心指令,通过精准表达用户需求引导模型生成预期结果。其核心原理是激活模型相关知识,明确任务、提供上下文与约束条件。Prompt工程的关键在于清晰具体(避免歧义)、结构化引导(如分步推理、示例参考)和迭代优化。常见类型包括指令型、问答型、创意型等,应用场景涵盖文本生成、代码编写、图片/视频创作等。例如,生成图片时,细节描述越丰富(如光影、色调),输出越符合预期;编写代码时可通过逐步追加需求优化结果。掌握Prompt技巧能显著提升AI输出质量,减少无效沟通,是高

2025-08-15 14:18:03 942

谷歌地图导航、地图定位

这是个源码,但里面的知识点可以帮助你很好的解决社区地图以及地图定位等等的开发。

2011-04-10

软件开发各个阶段文档

提供各个开发阶段不同的指导和描述,为你的开发减负,提供全新的分析模式

2009-06-30

sqlhelper帮助文档

简化sql语句,提供三层工厂公用属性,这个描述要求还真是多,同志们看看

2009-06-30

javascript不间断文字滚动控制代码

javascript不间断文字滚动控制代码,文字从数据库中读取不间断

2009-07-01

LINQ从基础到项目实战

从基础讲解linq的使用技巧,初学者可以好好学习

2011-04-10

C#数值计算算法编程

累计很多算法计算技巧,根据自己的需要进行组合

2011-04-13

验证码(可更改长度与燥点)

全新手写验证码,给你自己发挥的空间,想怎么改就这么改

2009-06-30

页面gzip压缩、加快页面显示

对asp.net的页面或脚本等资源进行高强度GZIP压缩(一般能压缩到只有1/5的体积),这里的资料都是我使用过程中收集的,使用方法和例子都有,本着分享的原则,希望对大家有帮助,如有疑问,可以和我交流

2011-04-10

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除