有趣“树”——线段树

线段树

一.为什么要用它

一. 为什么要用它:
题目一:
在这里插入图片描述
1.求一个整形数组arr中arr[L]到arr[R]的数据之和,0 < L && L<= R && R < 5.
2.将整形数组arr中arr[3]修改为6。
在这里插入图片描述

解:
第一题的时间复杂度为O(n)需要一个个相加
第二题的时间复杂度为O(1)直接通过下标修改

题目二:arr2[n]=arr[0]+arr[1]+…+arr[n]
在这里插入图片描述
1.已知数组arr2,求一个整形数组arr中arr[L]到arr[R]的数据之和,0 < L && L<= R && R < 5.
2.已知数组arr2,将整形数组arr中arr1[3]修改为6,求arr2。

解:
第一题的时间复杂度为O(1)只需通过下标arr[R]-arr[L]则可得到数据
第二题的时间复杂度为O(n)更新完arr的数据,arr2需要需要n次修改

线段树可以将上述题目的时间复杂度缩减为O(log2)

二.创建线段树

在这里插入图片描述
如图,有一组数组,我们如何将它转化为线段树呢?
线段树也是一种二叉树,父节点为子节点的和;
mid=(L+R)/2;
left_node = node * 2 + 1;
right_node = node * 2 + 2;

最终构建出线段树,如下图:
在这里插入图片描述
在这里插入图片描述

代码实现:

#include <iostream>
#include <stdio.h>
using namespace std;
#define MAX_LEN 100  //给tree一个尽量大的内存
/*
函数名:build_tree
作用:创建线段树
参数:arr[]:数组,tree[]:树,node:根结点,start:区间左边L,end:区间右边R
返回值:无
*/
void build_tree(int arr[], int tree[], int node, int start, int end) {
	if (start == end) {              //到达子节点
		tree[node] = arr[start];
	}
	else {
		int left_node = node * 2 + 1;
		int right_node = node * 2 + 2;
		int mid = (start + end) / 2;
		build_tree(arr, tree, left_node, start, mid);
		build_tree(arr, tree, right_node, mid + 1, end);
		tree[node] = tree[left_node] + tree[right_node];
	}
}

int main() {
	int arr[] = { 1, 3, 5, 7, 9, 11 };
	int size = 6;
	int tree[MAX_LEN] = { 0 };
	build_tree(arr, tree, 0, 0, size - 1);
	//打印观察结果
	for (int i = 0; i < 15; i++) {
		printf("tree[%d] = %d\n", i, tree[i]);
	}
	return 0;
}

结果:与tree数组一样
在这里插入图片描述

三.更新线段树

更新:arr[4] = 10,更新步骤如图:
在这里插入图片描述

代码实现:

#include <iostream>
#include <stdio.h>
using namespace std;
#define MAX_LEN 100  //给tree一个尽量大的内存
/*
函数名:build_tree
作用:创建线段树
参数:arr[]:数组,tree[]:树,node:根结点,start:区间左边L,end:区间右边R
返回值:无
*/
void build_tree(int arr[], int tree[], int node, int start, int end) {
	if (start == end) {              //到达子节点
		tree[node] = arr[start];
	}
	else {
		int left_node = node * 2 + 1;
		int right_node = node * 2 + 2;
		int mid = (start + end) / 2;
		build_tree(arr, tree, left_node, start, mid);
		build_tree(arr, tree, right_node, mid + 1, end);
		tree[node] = tree[left_node] + tree[right_node];
	}
}
/*
函数名:update_tree
作用:更新线段树
参数:arr[]:数组,tree[]:树,node:根结点,start:区间左边L,end:区间右边R,idx:要更新的数组下标,val:更新后的数值
返回值:无
*/
void update_tree(int arr[], int tree[], int node, int start, int end, int idx, int val) {
	if (start == end) {              //到达子节点
		arr[idx] = val;
		tree[node] = val;
	}
	else
	{
		int mid = (start + end) / 2;
		int left_node = node * 2 + 1;
		int right_node = node * 2 + 2;
		if (idx > start && idx <= mid)
			update_tree(arr, tree, left_node, start, mid, idx, val);
		else
			update_tree(arr, tree, right_node, mid + 1, end, idx, val);
		tree[node] = tree[left_node] + tree[right_node];
	}
}
int main() {
	int arr[] = { 1, 3, 5, 7, 9, 11 };
	int size = 6;
	int tree[MAX_LEN] = { 0 };
	build_tree(arr, tree, 0, 0, size - 1);   //构建线段树
	//打印观察结果
	/*for (int i = 0; i < 15; i++) {
		printf("tree[%d] = %d\n", i, tree[i]);
	}
	printf("\n");*/
	update_tree(arr, tree, 0, 0, size - 1, 4, 10);  //更新线段树
	//打印观察结果
	for (int i = 0; i < 15; i++) {
		printf("tree[%d] = %d\n", i, tree[i]);
	}
	return 0;
}

结果:与跟新后的tree一样:
在这里插入图片描述

四.区间更新

五.区间之和

求arr[2]到arr[5]的和
在这里插入图片描述

/*
函数名:query_tree
作用:求区级线段树
参数:arr[]:数组,tree[]:树,node:根结点,start:区间左边L,end:区间右边R,L:区间左端点,R:区间右端点
返回值:无
*/
int query_tree(int arr[], int tree[], int node, int start, int end, int L, int R) {
	if (R < start || L > end)
		return 0;
	else if (start >= L && end <= R)
		return tree[node];
	else if (start == end) 
		return tree[node];
	else{
		int mid = (start + end) / 2;
		int left_node = node * 2 + 1;
		int right_node = node * 2 + 2;
		int sum_left = query_tree(arr, tree, left_node, start, mid, L, R);
		int sum_right = query_tree(arr, tree, right_node, mid + 1, end, L, R);
		return sum_left + sum_right;
	}
}

int main() {
	int arr[] = { 1, 3, 5, 7, 9, 11 };
	int size = 6;
	int tree[MAX_LEN] = { 0 };
	build_tree(arr, tree, 0, 0, size - 1);   //构建线段树
	
	int s = query_tree(arr, tree, 0, 0, size - 1, 2, 5);
	//打印观察结果
	printf("query_tree = %d", s);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值