线段树
一.为什么要用它
一. 为什么要用它:
题目一:
1.求一个整形数组arr中arr[L]到arr[R]的数据之和,0 < L && L<= R && R < 5.
2.将整形数组arr中arr[3]修改为6。
解:
第一题的时间复杂度为O(n)需要一个个相加
第二题的时间复杂度为O(1)直接通过下标修改
题目二:arr2[n]=arr[0]+arr[1]+…+arr[n]
1.已知数组arr2,求一个整形数组arr中arr[L]到arr[R]的数据之和,0 < L && L<= R && R < 5.
2.已知数组arr2,将整形数组arr中arr1[3]修改为6,求arr2。
解:
第一题的时间复杂度为O(1)只需通过下标arr[R]-arr[L]则可得到数据
第二题的时间复杂度为O(n)更新完arr的数据,arr2需要需要n次修改
线段树可以将上述题目的时间复杂度缩减为O(log2)
二.创建线段树
如图,有一组数组,我们如何将它转化为线段树呢?
线段树也是一种二叉树,父节点为子节点的和;
mid=(L+R)/2;
left_node = node * 2 + 1;
right_node = node * 2 + 2;
最终构建出线段树,如下图:
代码实现:
#include <iostream>
#include <stdio.h>
using namespace std;
#define MAX_LEN 100 //给tree一个尽量大的内存
/*
函数名:build_tree
作用:创建线段树
参数:arr[]:数组,tree[]:树,node:根结点,start:区间左边L,end:区间右边R
返回值:无
*/
void build_tree(int arr[], int tree[], int node, int start, int end) {
if (start == end) { //到达子节点
tree[node] = arr[start];
}
else {
int left_node = node * 2 + 1;
int right_node = node * 2 + 2;
int mid = (start + end) / 2;
build_tree(arr, tree, left_node, start, mid);
build_tree(arr, tree, right_node, mid + 1, end);
tree[node] = tree[left_node] + tree[right_node];
}
}
int main() {
int arr[] = { 1, 3, 5, 7, 9, 11 };
int size = 6;
int tree[MAX_LEN] = { 0 };
build_tree(arr, tree, 0, 0, size - 1);
//打印观察结果
for (int i = 0; i < 15; i++) {
printf("tree[%d] = %d\n", i, tree[i]);
}
return 0;
}
结果:与tree数组一样
三.更新线段树
更新:arr[4] = 10,更新步骤如图:
代码实现:
#include <iostream>
#include <stdio.h>
using namespace std;
#define MAX_LEN 100 //给tree一个尽量大的内存
/*
函数名:build_tree
作用:创建线段树
参数:arr[]:数组,tree[]:树,node:根结点,start:区间左边L,end:区间右边R
返回值:无
*/
void build_tree(int arr[], int tree[], int node, int start, int end) {
if (start == end) { //到达子节点
tree[node] = arr[start];
}
else {
int left_node = node * 2 + 1;
int right_node = node * 2 + 2;
int mid = (start + end) / 2;
build_tree(arr, tree, left_node, start, mid);
build_tree(arr, tree, right_node, mid + 1, end);
tree[node] = tree[left_node] + tree[right_node];
}
}
/*
函数名:update_tree
作用:更新线段树
参数:arr[]:数组,tree[]:树,node:根结点,start:区间左边L,end:区间右边R,idx:要更新的数组下标,val:更新后的数值
返回值:无
*/
void update_tree(int arr[], int tree[], int node, int start, int end, int idx, int val) {
if (start == end) { //到达子节点
arr[idx] = val;
tree[node] = val;
}
else
{
int mid = (start + end) / 2;
int left_node = node * 2 + 1;
int right_node = node * 2 + 2;
if (idx > start && idx <= mid)
update_tree(arr, tree, left_node, start, mid, idx, val);
else
update_tree(arr, tree, right_node, mid + 1, end, idx, val);
tree[node] = tree[left_node] + tree[right_node];
}
}
int main() {
int arr[] = { 1, 3, 5, 7, 9, 11 };
int size = 6;
int tree[MAX_LEN] = { 0 };
build_tree(arr, tree, 0, 0, size - 1); //构建线段树
//打印观察结果
/*for (int i = 0; i < 15; i++) {
printf("tree[%d] = %d\n", i, tree[i]);
}
printf("\n");*/
update_tree(arr, tree, 0, 0, size - 1, 4, 10); //更新线段树
//打印观察结果
for (int i = 0; i < 15; i++) {
printf("tree[%d] = %d\n", i, tree[i]);
}
return 0;
}
结果:与跟新后的tree一样:
四.区间更新
五.区间之和
求arr[2]到arr[5]的和
/*
函数名:query_tree
作用:求区级线段树
参数:arr[]:数组,tree[]:树,node:根结点,start:区间左边L,end:区间右边R,L:区间左端点,R:区间右端点
返回值:无
*/
int query_tree(int arr[], int tree[], int node, int start, int end, int L, int R) {
if (R < start || L > end)
return 0;
else if (start >= L && end <= R)
return tree[node];
else if (start == end)
return tree[node];
else{
int mid = (start + end) / 2;
int left_node = node * 2 + 1;
int right_node = node * 2 + 2;
int sum_left = query_tree(arr, tree, left_node, start, mid, L, R);
int sum_right = query_tree(arr, tree, right_node, mid + 1, end, L, R);
return sum_left + sum_right;
}
}
int main() {
int arr[] = { 1, 3, 5, 7, 9, 11 };
int size = 6;
int tree[MAX_LEN] = { 0 };
build_tree(arr, tree, 0, 0, size - 1); //构建线段树
int s = query_tree(arr, tree, 0, 0, size - 1, 2, 5);
//打印观察结果
printf("query_tree = %d", s);
return 0;
}