Monkey Party(HDU-3506)优化区间DP

Monkey Party

传送门HDU-3506

题意:是让你每次把相邻两队猴子合为一队,并且其时间花费为两队的猴子数总和,问把所有猴子合为一队最小需要的时间。

思路:这应该是一个区间DP的题,但是这个题是一个环形区间DP问题,所以它的最大数量是2000,正常的区间PD的时间复杂度是O(N3),所以这个题如果用正常区间DP会TLE(wa后才发现。。。),所以应该用四边形不等式来优化区间DP,把时间复杂度降为O(N2),这样才可以过。

四边形不等式的证明感觉挺麻烦的,所以直接贴个链接吧四边形不等式

环形区间DP的解决方法: 把数组存两遍,对全数组进行区间DP,区间最大长度为n。

区间DP的优化方式: 缩小查找分割点的范围,用一个数组(如s[ ][ ])来记录每次循环出的区间的最优分割点。之后当要搜索[i , j]区间的最优分割点时,可以在区间[ s[i][j-1], s[i+1][j] ]之间枚举。

c++代码

#include<iostream>
#include<cstdio>
#include<algorithm> 
#include<cstring>
#include<string>
#include<vector>
using namespace std;
int a[2010];//存前缀和
int dp[2010][2010];
int s[2010][2010];//记录最优分割点
int inf=0x3f3f3f3f;

int main(){
	int n;
	while(cin>>n){
		for(int i=1;i<=n;i++){
			cin>>a[i];
			a[i+n]=a[i];
		}
		memset(dp,inf,sizeof(dp));
		for(int i=1;i<=n*2;i++) a[i]+=a[i-1];
		for(int i=1;i<=n*2;i++){
			dp[i][i]=0;
			s[i][i]=i;
		}
		for(int len=1;len<n;len++){
			for(int i=1;i<=n;i++){
				int j=i+len;
				for(int k=s[i][j-1];k<=s[i+1][j];k++){
					if(dp[i][k]+dp[k+1][j]+a[j]-a[i-1]<dp[i][j]){
						dp[i][j]=dp[i][k]+dp[k+1][j]+a[j]-a[i-1];
						s[i][j]=k;
					}
				}
			}
		}
		int m=1e9;
		for(int i=1;i<=n;i++){
			m=min(m,dp[i][i+n-1]);
		}
		cout<<m<<endl;
	}               
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值