Monkey Party
传送门HDU-3506
题意:是让你每次把相邻两队猴子合为一队,并且其时间花费为两队的猴子数总和,问把所有猴子合为一队最小需要的时间。
思路:这应该是一个区间DP的题,但是这个题是一个环形区间DP问题,所以它的最大数量是2000,正常的区间PD的时间复杂度是O(N3),所以这个题如果用正常区间DP会TLE(wa后才发现。。。),所以应该用四边形不等式来优化区间DP,把时间复杂度降为O(N2),这样才可以过。
四边形不等式的证明感觉挺麻烦的,所以直接贴个链接吧四边形不等式。
环形区间DP的解决方法: 把数组存两遍,对全数组进行区间DP,区间最大长度为n。
区间DP的优化方式: 缩小查找分割点的范围,用一个数组(如s[ ][ ])来记录每次循环出的区间的最优分割点。之后当要搜索[i , j]区间的最优分割点时,可以在区间[ s[i][j-1], s[i+1][j] ]之间枚举。
c++代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<vector>
using namespace std;
int a[2010];//存前缀和
int dp[2010][2010];
int s[2010][2010];//记录最优分割点
int inf=0x3f3f3f3f;
int main(){
int n;
while(cin>>n){
for(int i=1;i<=n;i++){
cin>>a[i];
a[i+n]=a[i];
}
memset(dp,inf,sizeof(dp));
for(int i=1;i<=n*2;i++) a[i]+=a[i-1];
for(int i=1;i<=n*2;i++){
dp[i][i]=0;
s[i][i]=i;
}
for(int len=1;len<n;len++){
for(int i=1;i<=n;i++){
int j=i+len;
for(int k=s[i][j-1];k<=s[i+1][j];k++){
if(dp[i][k]+dp[k+1][j]+a[j]-a[i-1]<dp[i][j]){
dp[i][j]=dp[i][k]+dp[k+1][j]+a[j]-a[i-1];
s[i][j]=k;
}
}
}
}
int m=1e9;
for(int i=1;i<=n;i++){
m=min(m,dp[i][i+n-1]);
}
cout<<m<<endl;
}
}