约瑟夫环问题
求最后生存者的约瑟夫环问题:
- 链表模拟
- 递推
在递推解法中,将节点0~N-1编号
每次删除节点K-1后重新编号对应关系如下
对应的前次编号f[n] | 此次编号f[n-1] |
---|---|
k | 0 |
k+1 | 1 |
k+2 | 2 |
... | ... |
k-2 | n-2 |
k-1 | n-1 |
定义f[n]为共n个数进行删除时剩余数的编号,则易知f[1]=0
归纳出此次编号对应的前次编号为f[n]=(f[n-1]+K)%n
容易看出为一个逆推的关系,共两个数进行删除时f[2]=(f[1]+K)%2,依次下去,可以推出在第一次删除过程中它的编号f[n],即初始编号。
由于该递推关系只与前一时刻有关,可以简化成一个变量num记录幸存者编号
上面的逐个递推虽然为O(n)复杂度,但在10^18的数据规模下略显无力。
注意到模i运算在数num<i时为num,num<i的一段可以构成K的等差数列
要删除的数的总数 | 幸存者编号 |
---|---|
i | num+k<i |
i+1 | num+2*k<i+1 |
i+2 | num+3*k<i+2 |
i+3 | num+4*k<i+3 |
... | ... |
i+(x-1) | num+(x-1)*k<i+(x-2) |
i+x | num+x*k<i+(x-1) |
解出x,则可以直接从i推到i+x,这里有一个小的注意问题
x=(i-1-num)/(k-1)解出的x是满足num+x*k<=i+(x-1)的,我们要求严格的小于关系(小于时才能直接用值代替模的结果),因此取x=(i-1-num)/(k-1)-1
#include<stdio.h>
#define ll __int64
int main(){
ll n,k,num,i,x;
scanf("%I64d%I64d",&n,&k);
num=0;
for (i=2;i<=n;++i){
//num=(num+k)%i;
if (num+k<i){
x=(i-num-1)/(k-1)-1;
if (i+x-1<n){
num+=x*k;
i+=x;
}
else{
num+=(n-i)*k;
i=n;
}
}
num=(num+k)%i;
}
printf("%I64d\n",num+1);
}