约瑟夫环问题

约瑟夫环问题

求最后生存者的约瑟夫环问题:

  • 链表模拟
  • 递推

在递推解法中,将节点0~N-1编号
每次删除节点K-1后重新编号对应关系如下

对应的前次编号f[n]此次编号f[n-1]
k0
k+11
k+22
......
k-2n-2
k-1n-1

定义f[n]为共n个数进行删除时剩余数的编号,则易知f[1]=0
归纳出此次编号对应的前次编号为f[n]=(f[n-1]+K)%n
容易看出为一个逆推的关系,共两个数进行删除时f[2]=(f[1]+K)%2,依次下去,可以推出在第一次删除过程中它的编号f[n],即初始编号。

由于该递推关系只与前一时刻有关,可以简化成一个变量num记录幸存者编号

上面的逐个递推虽然为O(n)复杂度,但在10^18的数据规模下略显无力。
注意到模i运算在数num<i时为num,num<i的一段可以构成K的等差数列

要删除的数的总数幸存者编号
inum+k<i
i+1num+2*k<i+1
i+2num+3*k<i+2
i+3num+4*k<i+3
......
i+(x-1)num+(x-1)*k<i+(x-2)
i+xnum+x*k<i+(x-1)

解出x,则可以直接从i推到i+x,这里有一个小的注意问题
x=(i-1-num)/(k-1)解出的x是满足num+x*k<=i+(x-1)的,我们要求严格的小于关系(小于时才能直接用值代替模的结果),因此取x=(i-1-num)/(k-1)-1


#include<stdio.h>
#define ll __int64
int main(){
    ll n,k,num,i,x;
    scanf("%I64d%I64d",&n,&k);
    num=0;
    for (i=2;i<=n;++i){
        //num=(num+k)%i;
        if (num+k<i){
            x=(i-num-1)/(k-1)-1;
            if (i+x-1<n){
                num+=x*k;
                i+=x;
            }
            else{
                num+=(n-i)*k;
                i=n;
            }
        }
        num=(num+k)%i;
    }
    printf("%I64d\n",num+1);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值