背景
英特尔®人工智能分析工具包(ai Kit)为数据科学家、人工智能开发人员和研究人员提供了熟悉的Python*工具和框架来加速基于英特尔架构的端到端数据科学和分析管道。这些组件是使用oneAPI库构建的,用于低级计算优化。该工具包最大限度地提高了从预处理到机器学习的性能,并提供了高效的互操作性模型的发展。你可以在Al Kit上找到更多信息。用户可以学习如何运行Al Kit中不同组件的样本与那些入门样本。
TensorFlow*是深度学习领域广泛使用的机器学习框架,要求高效的计算资源利用。为了充分利用英特尔架构并提取最大性能,TensorFlow*框架已使用英特尔®oneDNN原语进行了优化。本文演示了如何训练示例神经网络,并展示了英特尔优化的TensorFlow*如何默认启用英特尔®oneDNN调用。英特尔优化的TensorFlow*可作为英特尔®人工智能分析工具包(ai Kit)的一部分。这个示例代码展示了如何开始使用Intel®优化TensorFlow*。实现了一个具有一个卷积层和一个ReLU层的示例神经网络。您可以使用简单的Python代码构建和训练TensorFlow*神经网络。此外,通过控制内置环境变量,本文试图明确演示如何调用Intel @ oneDNN原语,并显示其在神经网络训练期间的性能。
步骤
1. 激活conda环境
默认情况下,ai工具包安装在intel/oneapi文件夹中,需要root权限来管理它。
conda activate tensorflow
2. 运行脚本
1. 切换到示例目录。2. 运行Python脚本。
python TensorFlow_HelloWorld.py
3. 在Intel®DevCloud上运行示例(可选)
1. 在Linux*系统上打开终端。2