自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 Pytorch学习笔记:YOLOv5-Backbone模块实现

在 P9 中,我们完成了从造零件(P8) 到组装整车的跨越。每隔一段,就用一个 stride=2 的Conv层让图片变小、通道变多 (64 -> 128 -> … -> 1024)。这就像是把原本很大很薄的图片,浓缩成很小很厚的特征方块。在每次下采样之后,紧跟一个C3模块 (CSP Bottleneck)。它的作用是在当前尺寸下,反复挖掘特征,让模型看得更清楚。C3模块的重复次数是。中间那层 (512通道) 重复了 9 次,是最“厚”的,说明那里是模型思考最久的地方。

2025-12-19 21:47:19 423

原创 Pytorch学习笔记:YOLOv5-C3模块实现

Conv 模块 (CBL): 这是最基础的砖头。结构:Conv2d + BatchNorm + SiLU (激活函数)。注意:这里用的激活函数是 SiLU (Swish),比以前用的 ReLU 更平滑,效果更好,是 YOLOv5 的标配。Bottleneck 模块 (残差块): 这是为了让网络“变深”而不退化的关键。原理:借鉴了 ResNet 的 Shortcut (短路连接) 思想。输入 x 经过两次卷积后,再和原来的 x 相加 (y = f(x) + x)。这样网络就能记住之前的特征,不容易“学傻”。

2025-12-11 22:43:14 474

原创 Pytorch学习笔记:马铃薯病害识别(VGG-16复现)

之前迁移学习“借”别人的大脑 (resnet34)。它的“身体”已经学会看东西了,我们只换了个“头” (fc层),只训练那个头。这次模型复现“自己造”大脑!我们从零开始,用最基础的积木 (卷积层、池化层、全连接层),按照 VGG-16 的图纸,一层一层把它搭出来。它的初始状态是一张白纸,什么都不会,我们要从头训练它。

2025-12-05 19:42:48 863

原创 Pytorch学习笔记:人脸识别(VGG-16)

原理:在 P6 之前,我们都是训练完最后才保存。但有时候模型训练太久反而会“变笨”(过拟合)。所以我们要“边跑边存”,只留最好的那个。步骤: (1) 在训练循环外,设一个变量 best_acc = 0 (代表最高分)。(2) 在每一轮“考试”(test) 结束后,拿到当次的 test_acc。(3) 判断:如果这次考得比以前都好 (if test_acc > best_acc)。(4) 更新:刷新纪录 (best_acc = test_acc)。

2025-11-28 17:42:19 523

原创 Pytorch学习笔记:Pytorch运动鞋识别

learning_rate = 0.001 # 初始学习率# 动态学习率# 每隔 5 轮 (step_size=5),就把学习率乘以 0.1 (gamma=0.1)# 意思是:学得越久,改错越小心!1. 动态学习率 (Dynamic Learning Rate)P4 做法: 学习率 (lr) 在整个训练过程中是固定不变的(例如一直都是 0.001)。P5 引入: 使用 lr_scheduler 来动态调整学习率。

2025-11-21 18:34:47 937

原创 Pytorch学习笔记:猴痘病识别

epochs = 20 # 跑 20 轮# 告诉“辅导员”,只“辅导”那个“新头”!1. 迁移学习 (Transfer Learning)这里引入了预训练模型 (Pre-trained Model)。我们加载了 models.resnet34(pretrained=True), 这意味着我们“借用”了一个已经在 ImageNet (一个巨大的数据集) 上训练好的“超级模型”。这能极大地提高训练速度和最终精度,尤其是在我们自己的“猴痘” 数据集很小的情况下。

2025-11-15 00:13:07 957

原创 Pytorch学习笔记:Pytorch实现天气识别

和 P1, P2 完全一样epochs = 20 # (P3 的大脑更“大”,食材也“难”,跑了 20 轮)# (这整块都是新加的)print("\n开始预测一张新图片...")# a. 告诉Pytorch我们要用哪个"食谱" (transform)# (!!重要!!) 我们不能用“练习册”那个“食谱”,因为它会“乱翻”# 我们要用一个“干净”的、“只加工、不乱翻”的“食谱”transforms.Resize((64, 64)), # 1. 缩放。

2025-11-07 19:39:36 240

原创 Pytorch学习笔记:CIFAR10彩色图片识别

(和 P1 一样)epochs = 5 # (P2 的大脑更“大”,可以先设成 5 跑跑看)

2025-10-31 19:30:19 342

原创 Pytorch学习笔记:实现mnist手写数字识别

设置训练参数learning_rate = 0.001 # 学习率,控制模型改错的幅度epochs = 5 # 训练轮次,把“练习册”完整学5遍# 定义“评分标准”(损失函数)# CrossEntropyLoss 是分类问题最常用的标准,电脑猜错了就给高“罚分”# 定义“优化器”(Adam)# 它的作用就是根据“罚分”,去自动调整模型参数,让它下次猜得更准。

2025-10-24 20:01:03 707

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除