做此题的时候,学会了一个算法,叫回溯法。
1.基本概念
回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径.
回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。
2.基本思想
在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。
若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。
而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。
3.用回溯法解题的一般步骤:
1)针对所给问题,确定问题的解空间:
首先应明确定义问题的解空间,问题的解空间应至少包含问题的一个(最优)解。
(2)确定结点的扩展搜索规则
(3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索
下面的代码是我对这个题的解答:
class Solution {
private:
void dpfun(vector<string>&result,int index,string digits,string cur,map<char,string>h){
int len = digits.length();
if(index>len-1)
{
if(cur.length()!=0)
{
result.push_back(cur);
return;
}
}
char temp = digits[index];
string str = h[temp];
for(int i = 0;i<str.length();i++)
{
string next = "";
next +=cur;
next +=str[i];
dpfun(result,index+1,digits,next,h);
}
}
public:
vector<string> letterCombinations(string digits) {
map<char,string>h;
vector<string> result;
if(digits.length()<1)
return result;
h['2'] = "abc";
h['3'] = "def";
h['4'] = "ghi";
h['5'] = "jkl";
h['6'] = "mno";
h['7'] = "pqrs";
h['8'] = "tuv";
h['9'] = "wxyz";
dpfun(result,0,digits,"",h);
return result;
}
};