离散数学及其应用课程复习Kenneth H.Rosen

离散数学及其应用课程笔记


MiracleZero

chap1 The Foundations: Logic and Proofs

英文中文英文中文
proposition命题equivalence等价式
predicate谓词quantifier量词
inference推理negation否定NOT ¬ \lnot ¬
conjunction合取ANDKaTeX parse error: Undefined control sequence: \and at position 1: \̲a̲n̲d̲Disjunction析取OR ∨ \lor
Exclusive or异或XOR ⊕ \oplus ImplicationIF-THEN → \rightarrow
BiconditionalIF AND ONLY IF ↔ \leftrightarrow hypothesis假设
antecedent前件premise前提
conclusion结论consequence后件
conversecontrapositive逆否
inversebitwise逐位
knight骑士knave无赖
Tautologies永真式Contradictions矛盾式
Contingencies可能式Normal Forms范式
Dual对偶式Pierce arrow或非 ↓ \downarrow
Sheffer stroke与非$$satisfiable
DNF析取范式CNF合取范式
clause子句domain论域
Universal Quantifier全称量词 ∀ \forall Existential Quantifier存在量词 ∃ \exists
counterexample反例Uniqueness Quantifier唯一性量词 ∃ ! \exist ! !
scope(变量的)作用域nested嵌套的
argument论证proof证明
theorem定理axioms公理
lemma引理corollary推论
猜想trivial平凡证明
vacuous proof空证明rational number有理数
without loss of generality不失一般性
  • 异或

    p p p q q q p ⊕ q p\oplus q pq
    TTF
    TFT
    FTT
    FFF
  • IF p THEN q

    p implies q

    p only if q=q if p

    q when p

    q whenever p

    q follows from p

    p is sufficient for q 充分

    q is necessary for p 必要

    q unless ¬ \lnot ¬p

  • 逆、逆否、反

    符号含义定义
    q → p q\rightarrow p qpis the **converse **of p → q p\rightarrow q pq逆(左右颠倒)
    ¬ q → ¬ p \lnot q\rightarrow \lnot p ¬q¬pis the contrapositive of p → q p\rightarrow q pq逆否(与原命题等价)
    ¬ p → ¬ q \lnot p\rightarrow \lnot q ¬p¬qis the inverse of p → q p\rightarrow q pq
  • 优先级

    operatorprecedence
    ¬ \lnot ¬1
    ∧ \land 2
    ∨ \lor 3
    → \rightarrow 4
    ↔ \leftrightarrow 5
  • 对偶式

    S = ( p ∨ ¬ q ) ∧ r ∧ T S=(p\lor \lnot q)\land r\land T S=(p¬q)rT

    S ∗ = ( p ∧ ¬ q ) ∨ r ∨ F S^*=(p\land \lnot q)\lor r\lor F S=(p¬q)rF

    即所有and变成or,所有or变成and,所有T变成F,所有F变成T

    s ⇔ t s\Leftrightarrow t st if and only if s ∗ ⇔ t ∗ s^*\Leftrightarrow t^* st

  • 功能完备符号:

    { ¬ , ∨ } \{\lnot, \lor\} {¬,} { ¬ , ∧ } \{\lnot, \land\} {¬,} { ∣ } \{|\} {} { ↓ } \{\downarrow\} {}

  • 析取DNF范式: ( A 1 ∧ A 2 ) ∨ B 1 ∨ ( C 1 ∧ C 2 ) (A_1\land A_2)\lor B_1\lor (C_1\land C_2) (A1A2)B1(C1C2)

    合取CNF范式: ( A 1 ∨ A 2 ) ∧ B 1 ∧ ( C 1 ∨ C 2 ) (A_1\lor A_2)\land B_1\land (C_1\lor C_2) (A1A2)B1(C1C2)

  • 量词优先级比逻辑运算符更高

  • 命题中的变量必须是Bound variable(被赋值的或被量词约束的)

在这里插入图片描述

  • corresponding tautology
    Modus Ponens假言推理 ( p ∧ ( p → q ) ) → q (p\land(p\rightarrow q))\rightarrow q (p(pq))q
    Modus Tollens取拒式 ( ¬ q ∧ ( p → q ) ) → ¬ p (\lnot q\land(p\rightarrow q))\rightarrow \lnot p (¬q(pq))¬p
    Hypothetical Syllogism假言三段论 ( ( p → q ) ∧ ( q → r ) ) → ( p → r ) ((p\rightarrow q)\land(q\rightarrow r))\rightarrow(p\rightarrow r) ((pq)(qr))(pr)
    Disjunctive Syllogism析取三段论 ( ¬ p ∧ ( p ∨ q ) ) → q (\lnot p\land(p\lor q))\rightarrow q (¬p(pq))q
    Addition附加律 p → ( p ∨ q ) p\rightarrow (p\lor q) p(pq)
    Simplification简化律 ( p ∧ q ) → p (p\land q)\rightarrow p (pq)p
    Conjunction合取律KaTeX parse error: Undefined control sequence: \and at position 5: ((p)\̲a̲n̲d̲(q))\rightarrow…
    Resolution消解律 ( ( ¬ p ∨ r ) ∧ ( p ∨ q ) ) → ( r ∨ q ) ((\lnot p\lor r)\land(p\lor q))\rightarrow (r\lor q) ((¬pr)(pq))(rq)
  • 平凡证明: p → T p\rightarrow T pT is T T T

    空证明: F → q F\rightarrow q Fq is T T T


chap2 Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

英文中文英文中文
Sequences序列Summation求和
Cardinality基数paradox悖论
Power Set幂集tuple有序元组
Cartesian Product笛卡尔积union集合的并 ∪ \cup
intersection集合的交 ∩ \cap complement集合的补 A ˉ \bar A Aˉ
Inclusion-Exclusion容斥原理symmetric difference对称差
Domain定义域Codomain陪域、值域
ImagePreimage原像
Injection单射Surjection满射
Bijection双射Inverse Function反函数
progression级数Recurrence Relations递推关系
lexicographic字典序computable可计算的
rectangular矩形的identity matrix单位矩阵
transpose转置symmetric对称的
  • 集合的基数记为 ∣ A ∣ \vert A\vert A,即集合中元素的个数

  • 幂集 P ( A ) \mathcal{P}(A) P(A):集合中所有子集组成的集合,一个n个元素的集合的幂集有 2 n 2^n 2n个元素

  • 两个元素的元组被称为ordered pairs序偶

  • 笛卡尔积: A × B = { ( a , b ) ∣ a ∈ A ∧ b ∈ B } A\times B=\{(a,b)\vert a\in A \land b\in B\} A×B={(a,b)aAbB}

  • 对称差: A ⊕ B = ( A − B ) ∪ ( B − A ) A\oplus B=(A-B)\cup(B-A) AB=(AB)(BA)

  • 反函数的前提是原函数是双射的

  • f ∘ g ( x ) = f ( g ( x ) ) f\circ g(x)=f(g(x)) fg(x)=f(g(x))

  • n ! ∼ 2 π n ( n e ) n n!\sim \sqrt{2\pi n}(\frac n e)^n n!2πn (en)n

  • SumClosed Form
    ∑ k = 0 n a r k \sum_{k=0}^n ar^k k=0nark a r n + 1 − a r − 1 , r ≠ 1 \frac{ar^{n+1}-a}{r-1}, r\neq 1 r1arn+1a,r=1
    ∑ k = 1 n k \sum_{k=1}^n k k=1nk n ( n + 1 ) 2 \frac{n(n+1)}2 2n(n+1)
    ∑ k = 1 n k 2 \sum_{k=1}^n k^2 k=1nk2 n ( n + 1 ) ( n + 2 ) 6 \frac{n(n+1)(n+2)}6 6n(n+1)(n+2)
    ∑ k = 1 n k 3 \sum_{k=1}^n k^3 k=1nk3 n 2 ( n + 1 ) 2 4 \frac{n^2(n+1)^2}4 4n2(n+1)2
    ∑ k = 0 ∞ x k , ∣ x ∣ < 1 \sum_{k=0}^\infty x^k, \vert x\vert <1 k=0xk,x<1 1 1 − x \frac 1{1-x} 1x1
    ∑ k = 1 ∞ k x k − 1 \sum_{k=1}^\infty kx^{k-1} k=1kxk1 1 ( 1 − x ) 2 \frac 1 {(1-x)^2} (1x)21
  • 可数集:基是有限的或跟正整数集相同,则是可数的

  • 一个无限且可数的集合的基被称为 ℵ 0 \aleph_0 0(可以跟正整数集建立一个一一对应的映射)

  • 实数集的基为 ℵ 1 \aleph_1 1

  • 一个集合的幂集的基,一定大于原集合的基


chap3 Algorithms

英文中文英文中文
Brute-Force暴力算法Tractable易解
Intractable难解polynomial多项式
  • NotationExplaination
    Big-O: f ( x ) f(x) f(x) is O ( g ( x ) ) O(g(x)) O(g(x)) ∣ f ( x ) ∣ ≤ C ∣ g ( x ) ∣ \vert f(x)\vert\leq C\vert g(x)\vert f(x)Cg(x)
    Big-Omega: f ( x ) f(x) f(x) is Ω ( g ( x ) ) \Omega(g(x)) Ω(g(x)) ∣ f ( x ) ∣ ≥ C ∣ g ( x ) ∣ \vert f(x)\vert\geq C\vert g(x)\vert f(x)Cg(x)
    Big-Theta: f ( x ) f(x) f(x) is Θ ( g ( x ) ) \Theta(g(x)) Θ(g(x)) O ( g ( x ) ) & Ω ( g ( x ) ) O(g(x)) \& \Omega(g(x)) O(g(x))&Ω(g(x))
  • NP类:可以在多项式复杂度内被check,但不能在多项式复杂度内解决

  • NP完全类:if you find a polynomial time algorithm for one member of the class, it can be used to solve all the problems in the class


chap5 Induction and recursion

  • 数学归纳法: P ( 1 ) ∧ ∀ k ( P ( k ) → P ( k + 1 ) ) → ∀ n P ( n ) P(1)\land \forall k(P(k)\to P(k+1))\to \forall nP(n) P(1)k(P(k)P(k+1))nP(n)
    • BASIC STEP:
    • INDUCTIVE STEP:
    • Hence,…
  • 每个简单多边形都会把一个区域变为内部区域和外部区域
  • 任何一个简单多边形都有其内部的对角线(lemma)
  • 良序性(正整数体系的公理):A set is well ordered if every subset has a least element.
    • 数学归纳法和强归纳法与良序性的成立是等价的

chap6 Counting

英文中文英文中文
Pigeonhole鸽巢Permutation排列
Combination组合Binomial Coefficient二项系数
distinguishable可分辨的
  • 排列: P ( n , r ) = n ! ( n − r ) ! P(n,r)=\frac{n!}{(n-r)!} P(n,r)=(nr)!n!

  • 组合: C ( n , r ) = n ! ( n − r ) ! r ! C(n,r)=\frac{n!}{(n-r)! r!} C(n,r)=(nr)!r!n!

  • 二项式定理: ( x + y ) n = Σ j = 0 n ( n j ) x n − j y j (x+y)^n=\Sigma_{j=0}^n \begin{pmatrix} n\\j \end{pmatrix}x^{n-j}y^j (x+y)n=Σj=0n(nj)xnjyj

  • Σ k = 1 n ( − 1 ) k ( n k ) = 0 \Sigma_{k=1}^n(-1)^k \begin{pmatrix}n\\k\end{pmatrix}=0 Σk=1n(1)k(nk)=0

  • 帕斯卡定理: ( n + 1 k ) = ( n k − 1 ) + ( n k ) \begin{pmatrix}n+1\\k\end{pmatrix}=\begin{pmatrix}n\\k-1\end{pmatrix}+\begin{pmatrix}n\\k\end{pmatrix} (n+1k)=(nk1)+(nk)

  • Vandermonde’s: ( m + n r ) = Σ k = 0 r ( m r − k ) ( n k ) \begin{pmatrix}m+n\\r\end{pmatrix}=\Sigma_{k=0}^r\begin{pmatrix}m\\r-k\end{pmatrix}\begin{pmatrix}n\\k\end{pmatrix} (m+nr)=Σk=0r(mrk)(nk)

    • 推论: ( 2 n n ) = Σ k = 0 n ( n k ) 2 \begin{pmatrix}2n\\n\end{pmatrix}=\Sigma_{k=0}^n\begin{pmatrix}n\\k\end{pmatrix}^2 (2nn)=Σk=0n(nk)2
  • 有n种饼干,取出共r个饼干的组合数量为: C ( n + r − 1 , r ) C(n+r-1,r) C(n+r1,r)

  • n个物体,k个盒子:

    n个物体r个盒子数量
    不同不同 n ! n 1 ! n 2 ! ⋅ ⋅ n k ! \frac{n!}{n_1!n_2!··n_k!} n1!n2!nk!n!
    相同不同 C ( n + r − 1 , n − 1 ) C(n+r-1,n-1) C(n+r1,n1)
    不同相同
    相同相同

chap8 Advanced Counting Techniques

英文中文英文中文
Homogeneous齐次的Nonhomogeneous非齐次的
generating function生成函数Inclusion-Exclusion容斥原理
Derangement错位排序
  • degree: a n = a n − 1 + a n − 8 a_n=a_{n-1}+a_{n-8} an=an1+an8的degree为8

    a recurrence relation of degree 8

  • Hanoi汉诺塔(3个柱子): H n = 2 n − 1 H_n=2^n-1 Hn=2n1

  • 齐次:每个x都是1次方的

  • 非齐次公式:

    如果递推关系是为: a n = c 1 a n − 1 + c 2 a a − 2 + ⋅ ⋅ ⋅ + c k a n − k + F ( n ) a_n=c_1a_{n-1}+c_2a_{a-2}+···+c_ka_{n-k}+F(n) an=c1an1+c2aa2++ckank+F(n)

    非齐次项 F ( n ) F(n) F(n)可以被记为 F ( n ) = ( b t n t + b t − 1 n t − 1 + ⋅ ⋅ ⋅ + b 1 n + b 0 ) s n F(n)=(b_tn^t+b_{t-1}n^{t-1}+···+b_1n+b_0)s^n F(n)=(btnt+bt1nt1++b1n+b0)sn

    如果s是 a n = c 1 a n − 1 + c 2 a a − 2 + ⋅ ⋅ ⋅ + c k a n − k a_n=c_1a_{n-1}+c_2a_{a-2}+···+c_ka_{n-k} an=c1an1+c2aa2++ckank的一个根,m为次数,最后的特解可以被记为: f ( n ) = n m ( p t n t + p t − 1 n t − 1 + ⋅ ⋅ ⋅ + p 1 n + p 0 ) s n f(n)=n^m(p_tn^t+p_{t-1}n^{t-1}+···+p_1n+p_0)s^n f(n)=nm(ptnt+pt1nt1++p1n+p0)sn

    如果s不是是 a n = c 1 a n − 1 + c 2 a a − 2 + ⋅ ⋅ ⋅ + c k a n − k a_n=c_1a_{n-1}+c_2a_{a-2}+···+c_ka_{n-k} an=c1an1+c2aa2++ckank的一个根,最后的特解可以被记为: f ( n ) = ( p t n t + p t − 1 n t − 1 + ⋅ ⋅ ⋅ + p 1 n + p 0 ) s n f(n)=(p_tn^t+p_{t-1}n^{t-1}+···+p_1n+p_0)s^n f(n)=(ptnt+pt1nt1++p1n+p0)sn

    例如


    a n = 6 a n − 1 − 9 a n − 2 + F ( n ) a_n=6a_{n-1}-9a_{n-2}+F(n) an=6an19an2+F(n)

    F ( n ) = ( n 2 + 1 ) 3 n F(n)=(n^2+1)3^n F(n)=(n2+1)3n

    则$m=2, s=3, f(n)=n2(p_2n2+p_1n+p_0)3^n $(s=3为一个根)


    a n = 6 a n − 1 − 9 a n − 2 + F ( n ) a_n=6a_{n-1}-9a_{n-2}+F(n) an=6an19an2+F(n)

    F ( n ) = n 2 2 n F(n)=n^22^n F(n)=n22n

    则$s=2, f(n)=(p_2n2+p_1n+p_0)2n $(s=2不是一个根)

  • 分治算法复杂度:

    f ( n ) = a f ( n / b ) + c n d f(n)=af(n/b)+cn^d f(n)=af(n/b)+cnd
    f ( n )  is  { O ( n d ) if a < b d O ( n d log ⁡ n ) if a = b d O ( n log ⁡ b a ) if a > b d f(n) \text{ is } \begin{cases} O(n^d)& \text{if}& a<b^d\\ O(n^d\log n)& \text{if}& a=b^d\\ O(n^{\log_ba})& \text{if}& a>b^d \end{cases} f(n) is O(nd)O(ndlogn)O(nlogba)ifififa<bda=bda>bd

  • 生成函数:
    f ( x ) = Σ k = 0 ∞ a k x k , g ( x ) = Σ k = 0 ∞ b k x k f(x)=\Sigma_{k=0}^\infty a_kx^k,g(x)=\Sigma_{k=0}^\infty b_kx^k f(x)=Σk=0akxk,g(x)=Σk=0bkxk

    1. f ( x ) + g ( x ) = Σ k = 0 ∞ ( a k + b k ) x k f(x)+g(x)=\Sigma_{k=0}^\infty(a_k+b_k)x^k f(x)+g(x)=Σk=0(ak+bk)xk
    2. α ⋅ f ( x ) = Σ k = 0 ∞ α ⋅ a k x k \alpha\cdot f(x)=\Sigma_{k=0}^\infty\alpha \cdot a_kx^k αf(x)=Σk=0αakxk
    3. x ⋅ f ′ ( x ) = Σ k = 0 ∞ k ⋅ a k x k x\cdot f'(x)=\Sigma_{k=0}^\infty k \cdot a_kx^k xf(x)=Σk=0kakxk
    4. f ( α x ) = Σ k = 0 ∞ α k ⋅ a k x k f(\alpha x)=\Sigma_{k=0}^\infty \alpha^k\cdot a_k x^k f(αx)=Σk=0αkakxk
    5. f ( x ) g ( x ) = Σ k = 0 ∞ ( Σ j = 0 k a j b k − j x k ) f(x)g(x)=\Sigma_{k=0}^\infty(\Sigma_{j=0}^k a_j b_{k-j}x^k) f(x)g(x)=Σk=0(Σj=0kajbkjxk)
  • 广义二项式定理:
    ( u k ) = { u ( u − 1 ) ⋅ ⋅ ⋅ ( u − k + 1 ) / k ! if k > 0 1 if k = 0 \begin{pmatrix}u\\k\end{pmatrix}= \begin{cases}u(u-1)···(u-k+1)/k!& \text{if} &k>0\\ 1&\text{if} & k=0 \end{cases} (uk)={u(u1)(uk+1)/k!1ififk>0k=0

    ( 1 + x ) u = Σ k = 0 ∞ ( u k ) x k (1+x)^u=\Sigma_{k=0}^\infty\begin{pmatrix}u\\k\end{pmatrix}x^k (1+x)u=Σk=0(uk)xk

    例如

    请找到 ( 1 + x ) − n (1+x)^{-n} (1+x)n的生成函数


    ( 1 + x ) − n = Σ k = 0 − n ( − n k ) x k = Σ k = 0 − n ( − 1 ) k C ( n + k − 1 , k ) x k \begin{aligned} (1+x)^{-n}&=\Sigma_{k=0}^{-n}\begin{pmatrix}-n\\k\end{pmatrix}x^k\\ &=\Sigma_{k=0}^{-n}(-1)^kC(n+k-1,k)x^k \end{aligned} (1+x)n=Σk=0n(nk)xk=Σk=0n(1)kC(n+k1,k)xk

在这里插入图片描述

  • n元素集合的错位排序个数: D n = n ! [ 1 − 1 1 ! + 1 2 ! − 1 3 ! + ⋅ ⋅ ⋅ + ( − 1 ) n 1 n ! ] D_n=n![1-\frac{1}{1!}+\frac 1{2!}-\frac 1{3!}+···+(-1)^n\frac 1 {n!}] Dn=n![11!1+2!13!1++(1)nn!1]

chap9 Relations

英文中文英文中文
properties性质closure闭包
reflexive自反的symmetric对称的
antisymmetic反对称的transitive可传递的
Composition组合diagonal对角线上
Equivalence等价Congruence同余
representive代表元partition划分
partial ordering偏序hasse diagram哈塞图
latticestotal order/linear order全序/线序 ≼ \preccurlyeq
chainmaximal极大元
minimal极小元greatest element最大元
least element最小元compatible兼容的
  • 集合的性质

    • 自反性Reflexive

      ( a , a ) ∈ R (a,a)\in R (a,a)R ∀ x [ x ∈ U → ( x , x ) ∈ R ] \forall x[x\in U\to(x,x)\in R] x[xU(x,x)R]

      空集上的空关系是自反的

    • 对称性Symmetric

      ∀ x ∀ y [ ( x , y ) ∈ R → ( y , x ) ∈ R ] \forall x \forall y[(x,y)\in R \to (y,x)\in R] xy[(x,y)R(y,x)R]

    • 反对称性Antisymmetric

      KaTeX parse error: Undefined control sequence: \and at position 31: …ll y[(x,y)\in R\̲a̲n̲d̲(y,x)\in R \to …

      不存在除了自反之外的对称关系

    • 传递性Transitive

      KaTeX parse error: Undefined control sequence: \and at position 42: … z [(x,y)\in R \̲a̲n̲d̲ ̲(y,z)\in R\to (…

  • R n ⊂ R ↔ R is transitive R^n\subset R\leftrightarrow \text{R is transitive} RnRR is transitive

  • 逆关系: R − 1 = { ( a , b ) ∣ ( b , a ) ∈ R } R^{-1}=\{(a,b)|(b,a)\in R\} R1={(a,b)(b,a)R}

  • 关系操作:

    • ( R ∪ S ) − 1 = R − 1 ∪ S − 1 (R\cup S)^{-1}=R^{-1}\cup S^{-1} (RS)1=R1S1
    • ( R ∩ S ) − 1 = R − 1 ∩ S − 1 (R\cap S)^{-1}=R^{-1}\cap S^{-1} (RS)1=R1S1
    • ( R ‾ ) − 1 = ( R − 1 ) ‾ (\overline R)^{-1}=\overline{(R^{-1})} (R)1=(R1)
    • ( A × B ) − 1 = B × A (A\times B)^{-1}=B\times A (A×B)1=B×A
  • transitive closure:

    连通关系connectivity relation: R ∗ = ∪ 1 ∞ R n R^*=\cup _1 ^\infty R^n R=1Rn

    关系的传递闭包就是关系的连通关系 R ∗ = t ( R ) R^*=t(R) R=t(R)

  • 等价关系:自反、对称且传递

    a   b a\text{~}b a b

  • R为集合A上的一个等价关系,则在集合A中与元素a相关的所有元素可以被表示为 [ a ] R [a]_R [a]R(等价类)
    [ a ] R = { s ∣ ( a , s ) ∈ R } [a]_R=\{s|(a,s)\in R\} [a]R={s(a,s)R}

  • 代表元:等价类中的任何一个元素都可以被成为代表元

  • 集合的划分: p r ( A ) = { A i ∣ i ∈ I } pr(A)=\{A_i|i\in I\} pr(A)={AiiI}

  • R 1 R_1 R1 R 2 R_2 R2为A上的两个等价关系,则 R 1 ∪ R 2 R_1\cup R_2 R1R2是A上的自反、对称关系, ( R 1 ∪ R 2 ) ∗ (R_1\cup R_2)^* (R1R2)是自反、对称、传递关系即等价关系

  • 偏序关系:自反、传递、反对称(分大小的不平等关系)

    • p o s e t ( S , ≼ ) poset(S,\preccurlyeq) poset(S,):定义在集合S上的一个偏序关系
    • 如果集合中任意两个元素都是可比的,则成为全序、线序,整个集合被称为一个链
    • 良序:拥有最小元素
    • 极小(大)元:没有一个小于它
    • 最小(大)元:所有元素都大于等于它
    • 格:任意一对元素都拥有最大上界和最小下界的偏序集,被称为一个格

chap10 Graphs

英文中文英文中文
vertice顶点edge
endpoint端点multigraph多重图
pseudograph伪图adjacent相邻顶点
incident关联pendant悬挂
in degree入度out degree出度
Bipartite二分图regular graph正规图
proper subgraph真子图Isomorphism同构
path通路connected component连通部分
articulation point割点Approximation algorithm近似算法
planer平面图region区域
Elementary subdivision初等细分Homeomorphic同胚
dual graph对偶图chromatic number着色数
  • G = ( V , E ) G=(V,E) G=(V,E)

  • 无向图分类:

    • 简单图:没有环,没有多重边
    • 多重图:没有环,可以有多重边
    • 伪图:可以有环和多重边
  • 有关图的术语:

    • adjacent:两个顶点之间有边相连,则称这两个顶点相关联
    • incident with vertices u and v:这条边连接了顶点u和v
    • loop:环
    • degree of a vertex顶点的度:在无向图中即为有多少条边与这个点关联(环算两个度
      • d e g ( v ) = 0 deg(v)=0 deg(v)=0,v is isolated
      • d e g ( v ) = 1 deg(v)=1 deg(v)=1,v is pendant
    • 无向图中, Σ v ∈ V d e g ( v ) = 2 e \Sigma_{v\in V}deg(v)=2e ΣvVdeg(v)=2e
      • 无向图中,偶数个顶点是奇数个度
    • 有向图中,一条边的起点initial vertex,终点terminal vertex
      • Σ v ∈ V d e g + ( v ) = Σ v ∈ V d e g − ( v ) = E \Sigma_{v\in V}deg^+(v)=\Sigma_{v\in V}deg^-(v)=E ΣvVdeg+(v)=ΣvVdeg(v)=E
  • 一些特殊的图:

    • 完全图 K n K_n Kn:每对顶点之间有且只有一条边相连
    • 圈图 C n C_n Cn:n个顶点围成一个圈首尾相连
    • 轮图 W n W_n Wn:在圈图中间加个点
    • 立方图 Q n Q_n Qn
  • 完全二分图 K m n K_{mn} Kmn:两组集合中每个点都与对面任意一个点相连

  • 正规图:每个顶点的度都相同

  • induced subgraph诱导子图:当且仅当子图中的边都在原图里,仅删除与子图中不存在的顶点相连的边

  • Incidence matrices关联矩阵:纵坐标为顶点,横坐标为边,针对无向图

  • path is simple:没有一条边被重复的通路

    • 单个顶点的通路长度为0
  • 图的连通:任意一对顶点间都有path

  • 割点:关节点,删去后会增加connected components的个数

  • 割边/桥:关节边,删去后会增加connected components的个数

  • 任何一个强连通的有向图都是弱连通的,可以把弱连通看作无向图,而强连通指有向图每对顶点间都双向连通

    • strongly connected components/strong components:有向图中的最大强连接子图
  • 欧拉回路:遍历所有的边,每条边只访问一遍

    • 区别欧拉通路和欧拉回路:是否要求回到原点
    • 欧拉图:包含欧拉回路的图
    • 对于无向图:
      • 欧拉回路充要条件:当且仅当每个顶点都是偶数个度
      • 欧拉通路充要条件:当且仅当只有2个顶点是奇数个度
    • 对于有向图
      • 欧拉回路:弱连接+出度与入度相同
      • 欧拉通路:弱连接+起点的出度多一个,终点的入度多一个
  • 哈密尔顿问题:遍历所有点,每个点只访问一遍

    • 还有没充要条件
    • 充分条件(满足条件则一定有,不满足也可能有):
      • 狄拉克定理: ∀ v ∈ V , d e g ( v ) ≥ n 2 \forall v\in V, deg(v)\geq \frac n 2 vV,deg(v)2n则有哈密尔顿通路
      • 欧尔定理: ∀ 不 相 邻 顶 点 v , u ∈ V , d e g ( v ) + d e g ( u ) ≥ n \forall 不相邻顶点v,u\in V, deg(v)+deg(u)\geq n v,uV,deg(v)+deg(u)n
    • 必要条件(用于判断不是哈密尔顿):
      • 连通图,每个顶点的度都必须大于等于1
      • 最多只有两个顶点的度是1
      • 如果一个顶点的度为2,则两条边都为哈密尔顿回路的一部分
      • 从顶点集合V中去掉一组顶点S,则新图的连接部分数量<=S的个数
  • weighted graph加权图: G = ( V , E , W ) G=(V,E,W) G=(V,E,W)

  • Dijkstra:寻找最短路径,要求所有路径都是正权重的

    • iterative
    • L k ( v ) = min ⁡ { L k − 1 ( v ) , L k − 1 ( u ) + w ( u , v ) } L_k(v)=\min\{L_{k-1}(v),L_{k-1}(u)+w(u,v)\} Lk(v)=min{Lk1(v),Lk1(u)+w(u,v)}
    • O ( n 2 ) O(n^2) O(n2)
  • 旅行商问题

    • 最短的哈密尔顿回路
    • 近似算法
  • 平面图:可以画在平面上且边与边不交叉

  • 区域Region:包括有界区域和无界区域

  • 欧拉公式:对于连通的平面简单图
    r = e − v + 2 r=e-v+2 r=ev+2
    对于非平面图也可能成立

  • 区域的度:区域边的总数(绕一圈的边的总数)

    • 推论1:
      e ≤ 3 v − 6 , if  v ≥ 3 e\leq 3v-6,\text{if }v\geq 3 e3v6,if v3
      对于不连通的平面简单图也成立

    • 推论2:对于一个平面简单图,G一定有一个顶点的度不超过5

    • 推论3:对于一个平面简单图,如果任何一个回路的长度都大于3,则 e ≤ 2 v − 4 e\leq 2v-4 e2v4

  • Kuratowski定理

    • 初等细分:增加原有道路上的细分点
    • 同胚:可以通过一系列的初等细分所获得的图
    • 一个图是非平面的 ⇔ \Leftrightarrow 包含一个与 K 3 , 3 K_{3,3} K3,3 K 5 K_5 K5同胚的子图
  • 着色问题

    • 地图的对偶图,相邻的区域间连线
    • 等价于对偶图的顶点着色,使每条边上的两个顶点不同颜色
    • 最少着色数记为 χ ( G ) \chi(G) χ(G)
    • 四色定理:一个平面图的着色数不超过4

chap11 Trees

英文中文英文中文
rootinternal vertice有孩子的节点
subtrees子树isomorphic同构的
preorder前序inorder中序
postorder后序spanning tree生成树
backtracking回溯
  • 树:没有简单回路的连通无向图

  • 无向图是一棵树 ⇔ \Leftrightarrow 每两个顶点之间都有唯一的简单通路

  • 满m叉树:每个中间节点都有m个孩子

  • 树的同构:

    • 根树的同构(有向图的同构)
    • 无根树的同构(无向图的同构)
  • 树的性质:

    • n个顶点的树就有n-1条边
    • 一个有i个内节点的满m叉树有 m i + 1 mi+1 mi+1和顶点
    • 树一定是个二分图
  • 二叉搜索树

    • 插入一个新节点,最多发生 ⌈ log ⁡ ( n + 1 ) ⌉ \lceil \log(n+1)\rceil log(n+1)次比较
  • 决策树

    • 由一系列节点生成一个解
  • prefix code

    • huffman code
  • 生成树

    • 一个简单图是连通的 ⇔ \Leftrightarrow 包含一个生成树
    • DFS深度优先搜索(回溯)会形成一个根树
    • BFS广度优先搜索
  • 最小生成树

    • Prim算法:找与已经连接的生成树距离最短的点,直到完全连通, O ( E log ⁡ ( V ) ) O(E\log(V)) O(Elog(V))
    • Kruskal算法:找现存的最短边(不会产生回路),直到完全联通, O ( V log ⁡ ( E ) ) O(V\log(E)) O(Vlog(E))

| | | |

  • 树:没有简单回路的连通无向图

  • 无向图是一棵树 ⇔ \Leftrightarrow 每两个顶点之间都有唯一的简单通路

  • 满m叉树:每个中间节点都有m个孩子

  • 树的同构:

    • 根树的同构(有向图的同构)
    • 无根树的同构(无向图的同构)
  • 树的性质:

    • n个顶点的树就有n-1条边
    • 一个有i个内节点的满m叉树有 m i + 1 mi+1 mi+1和顶点
    • 树一定是个二分图
  • 二叉搜索树

    • 插入一个新节点,最多发生 ⌈ log ⁡ ( n + 1 ) ⌉ \lceil \log(n+1)\rceil log(n+1)次比较
  • 决策树

    • 由一系列节点生成一个解
  • prefix code

    • huffman code
  • 生成树

    • 一个简单图是连通的 ⇔ \Leftrightarrow 包含一个生成树
    • DFS深度优先搜索(回溯)会形成一个根树
    • BFS广度优先搜索
  • 最小生成树

    • Prim算法:找与已经连接的生成树距离最短的点,直到完全连通, O ( E log ⁡ ( V ) ) O(E\log(V)) O(Elog(V))
    • Kruskal算法:找现存的最短边(不会产生回路),直到完全联通, O ( V log ⁡ ( E ) ) O(V\log(E)) O(Vlog(E))
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值