python深度学习
文章平均质量分 73
八咫鸦是我的光!
菜鸟的志向!
展开
-
Day2(pytorch)2.3自动求梯度
1.少年与爱永不老去,即便披荆斩棘,丢失怒马鲜衣。–莫峻在深度学习中,我们经常需要对函数求梯度(gradient)梯度:表示某一函数在该点处的方向导数沿着该方向取得最大值【即函数在该点处沿着该方向此变化最快,变化率最大。。。就是高数中的微分!还有偏导的概念】pytorch提供的autograd包能够根据输入和前向传播过程自动构建计算图,并执行反向传播。什么是前向传播?(我去网上搜了一下含义,感觉这一个概念涉及了很多别的概念,写在这的话篇幅有些大了,我另开一个博客记录一下)下面会介绍如何使用.原创 2021-04-14 20:14:37 · 96 阅读 · 0 评论 -
前向传播
我希望自己也是一颗星星。如果我会发光,就不必害怕黑暗。如果我自己是那么美好,那么一切恐惧就可以烟消云散。于是我开始存下了一点希望。——王小波下面所有内容均来自网络和自己的一点点理解。(侵删)额,它好像是属于神经网络的知识,so我先查了一下啥是神经网络神经网络可以指向两种,一是生物神经网络,一是人工神经网络生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。人工神经网络(Artificial Neural Networks,简写为ANN.原创 2021-04-14 20:03:49 · 4126 阅读 · 1 评论 -
深度学习笔记Day1
数据操作在 pytorch中,torch.Tensor是存储和变换数据的主要工具【tensor可译作“张量”,张量可以看作是一个多维数组。标量可以看作是0维张量,向量可以看作一维张量,矩阵看作二维张量】创建TENSOR首先导入PyTorchimport torch然后创建一个5*3的未初始化的tensor:x=torch.empty(5,3)print(x)输出:tensor([[6.6801e+35, 7.7772e-43, 6.6806e+35], [7.7772e原创 2021-04-13 20:10:35 · 205 阅读 · 0 评论