1.sum为前缀和下标为x的数
2.add操作更新数组,构建初始数组,如eg1,更新前缀和数组,如eg2,更新差分数组
3.对于一个数组A[ ],其差分数组D[i]=A[i]-A[i-1] (i>0)且D[0]=A[0]
令SumD[i]=D[0]+D[1]+D[2]+…+D[i] (SumD[ ]是差分数组D[ ]的前缀和)
则SumD[i]=A[0]+A[1]-A[0]+A[2]-A[1]+A[3]-A[2]+…+A[i]-A[i-1]=A[i]
即A[i]的差分数组是D[i], 而D[i]的前缀和是A[i]
5.对前缀和数组来讲,若i=1,2,3,4,5;则lowbit i=1,2,1,4,1;故做完add操作后,下标为奇数则为初始值,为偶数则为前缀和
6.对差分数组来讲,d[i]=a[i]-a[i-1];
7.tree为前缀和数组或差分数组,根据题目来定
8.当前数x可以表示为query(x),并不指其前缀和,而是add维护差分数组,tree为差分数组情况下,query计算当前值
9.相应的,在add维护前缀和数组的时候,query(x)指tree[1]+...+tree[x].
模板题:
题目描述
如题,已知一个数列,你需要进行下面两种操作:
1.将某一个数加上x
2.求出某区间每一个数的和
输入输出格式
输入格式:第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。
第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。
接下来M行每行包含3个整数,表示一个操作,具体如下:
操作1: 格式:1 x k 含义:将第x个数加上k
操作2: 格式:2 x y 含义:输出区间[x,y]内每个数的和
输出格式:输出包含若干行整数,即为所有操作2的结果。
输入输出样例
5 5 1 5 4 2 3 1 1 3 2 2 5 1 3 -1 1 4 2 2 1 4
14 16
说明
时空限制:1000ms,128M
数据规模:
对于30%的数据:N<=8,M<=10
对于70%的数据:N<=10000,M<=10000
对于100%的数据:N<=500000,M<=500000
代码如下
#include<bits/stdc++.h>
using namespace std;
const int maxn=600005;
int m,n;int tree[maxn];int a,b,c;int ea;
int lowbitt(int k);
void add(int x,int k);
int query(int x);
int main(){
scanf("%d%d",&n,&m);
// scanf("%d",&n);
for(int i=1;i<=n;i++){ scanf("%d",&ea); add(i,ea);}//构建初始tree数组
// for(int i=1;i<=n;i++){cout<<"i="<<i<<"tree="<<tree[i]<<endl;}
// for(int i=1;i<=n;i++) cout<<"i="<<i<<" "<<"lowi="<<lowbitt(i)<<endl;
for(int i=1;i<=m;i++){
scanf("%d%d%d",&a,&b,&c);
if(a==1) add(b,c);//第x个数加k
if(a==2) printf("%d\n",query(c)-query(b-1));//c的前缀和减去(b-1)的前缀和即为b到c的区间和
}
return 0;
}
int lowbitt(int k){//lowbit
return k&(-k);
}
void add(int x,int k){//构建tree初始数组
while(x<=n){
tree[x]+=k;
x+=lowbitt(x);
}
}
int query(int x){//求前缀和
int ans=0;
while(x!=0){
ans+=tree[x];
x-=lowbitt(x);
}
return ans;
}
题目描述
如题,已知一个数列,你需要进行下面两种操作:
1.将某区间每一个数数加上x
2.求出某一个数的和
输入输出格式
输入格式:第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。
第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。
接下来M行每行包含2或4个整数,表示一个操作,具体如下:
操作1: 格式:1 x y k 含义:将区间[x,y]内每个数加上k
操作2: 格式:2 x 含义:输出第x个数的值
输出格式:输出包含若干行整数,即为所有操作2的结果。
输入输出样例
5 5 1 5 4 2 3 1 2 4 2 2 3 1 1 5 -1 1 3 5 7 2 4
6 10
说明
时空限制:1000ms,128M
数据规模:
对于30%的数据:N<=8,M<=10
对于70%的数据:N<=10000,M<=10000
对于100%的数据:N<=500000,M<=500000
#include<bits/stdc++.h>
using namespace std;
const int maxn=600005;
int n,m;int ea;int a,b,c,d,e;int now=0;
int tree[maxn];
void add(int x,int k);
int query(int x);
int lowbitt(int k);
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){ scanf("%d",&ea); add(i,ea-now); now=ea;/*add(i,ea)*/;}
// for(int i=1;i<=n;i++){ cout<<"i="<<i<<" "<<"Tree="<<tree[i]<<" "<<"que="<<query(i)<<endl;}
for(int i=1;i<=m;i++){
scanf("%d",&a);
if(a==1){
scanf("%d%d%d",&b,&c,&d);
add(b,d);add(c+1,-d);
}
if(a==2){
scanf("%d",&e);
printf("%d\n",query(e));
}
}
return 0;
}
int lowbitt(int k){
return k&(-k);
}
void add(int x,int k){
while(x<=n){
tree[x]+=k;
x+=lowbitt(x);
}
}
int query(int x){
int ans=0;
while(x!=0){
ans+=tree[x];
// cout<<"x="<<x<<" "<<"ans="<<tree[x]<<endl;
x-=lowbitt(x);
}
return ans;
}