树状数组

1.sum为前缀和下标为x的数

2.add操作更新数组,构建初始数组,如eg1,更新前缀和数组,如eg2,更新差分数组

3.对于一个数组A[ ],其差分数组D[i]=A[i]-A[i-1] (i>0)且D[0]=A[0]

令SumD[i]=D[0]+D[1]+D[2]+…+D[i] (SumD[ ]是差分数组D[ ]的前缀和)

则SumD[i]=A[0]+A[1]-A[0]+A[2]-A[1]+A[3]-A[2]+…+A[i]-A[i-1]=A[i]

即A[i]的差分数组是D[i], 而D[i]的前缀和是A[i]

5.对前缀和数组来讲,若i=1,2,3,4,5;则lowbit i=1,2,1,4,1;故做完add操作后,下标为奇数则为初始值,为偶数则为前缀和

6.对差分数组来讲,d[i]=a[i]-a[i-1];

7.tree为前缀和数组或差分数组,根据题目来定

8.当前数x可以表示为query(x),并不指其前缀和,而是add维护差分数组,tree为差分数组情况下,query计算当前值

9.相应的,在add维护前缀和数组的时候,query(x)指tree[1]+...+tree[x].

模板题:

题目描述

如题,已知一个数列,你需要进行下面两种操作:

1.将某一个数加上x

2.求出某区间每一个数的和

输入输出格式

输入格式:

第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。

第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。

接下来M行每行包含3个整数,表示一个操作,具体如下:

操作1: 格式:1 x k 含义:将第x个数加上k

操作2: 格式:2 x y 含义:输出区间[x,y]内每个数的和

输出格式:

输出包含若干行整数,即为所有操作2的结果。

输入输出样例

输入样例:
5 5
1 5 4 2 3
1 1 3
2 2 5
1 3 -1
1 4 2
2 1 4
输出样例:
14
16

说明

时空限制:1000ms,128M

数据规模:

对于30%的数据:N<=8,M<=10

对于70%的数据:N<=10000,M<=10000

对于100%的数据:N<=500000,M<=500000


代码如下

#include<bits/stdc++.h>
using namespace std;
const int maxn=600005;


int m,n;int tree[maxn];int a,b,c;int ea;
int lowbitt(int k);
void add(int x,int k);
int query(int x);


int main(){
    scanf("%d%d",&n,&m);
//    scanf("%d",&n);
    for(int i=1;i<=n;i++){    scanf("%d",&ea);    add(i,ea);}//构建初始tree数组 
//    for(int i=1;i<=n;i++){cout<<"i="<<i<<"tree="<<tree[i]<<endl;}

//    for(int i=1;i<=n;i++)    cout<<"i="<<i<<" "<<"lowi="<<lowbitt(i)<<endl;
    for(int i=1;i<=m;i++){
        scanf("%d%d%d",&a,&b,&c);
        if(a==1)    add(b,c);//第x个数加k 
        if(a==2)    printf("%d\n",query(c)-query(b-1));//c的前缀和减去(b-1)的前缀和即为b到c的区间和 
    }
    
    return 0; 
}

int lowbitt(int k){//lowbit
    return k&(-k);
}

void add(int x,int k){//构建tree初始数组 
    while(x<=n){
        tree[x]+=k;
        x+=lowbitt(x);
    }
}

int query(int x){//求前缀和 
    int ans=0;
    while(x!=0){
        ans+=tree[x];
        x-=lowbitt(x);
    }
    return ans;
}

题目描述

如题,已知一个数列,你需要进行下面两种操作:

1.将某区间每一个数数加上x

2.求出某一个数的和

输入输出格式

输入格式:

第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。

第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。

接下来M行每行包含2或4个整数,表示一个操作,具体如下:

操作1: 格式:1 x y k 含义:将区间[x,y]内每个数加上k

操作2: 格式:2 x 含义:输出第x个数的值

输出格式:

输出包含若干行整数,即为所有操作2的结果。

输入输出样例

输入样例:
5 5
1 5 4 2 3
1 2 4 2
2 3
1 1 5 -1
1 3 5 7
2 4
输出样例:
6
10

说明

时空限制:1000ms,128M

数据规模:

对于30%的数据:N<=8,M<=10

对于70%的数据:N<=10000,M<=10000

对于100%的数据:N<=500000,M<=500000

#include<bits/stdc++.h>
using namespace std;
const int maxn=600005;


int n,m;int ea;int a,b,c,d,e;int now=0;
int tree[maxn];
void add(int x,int k);
int query(int x);
int lowbitt(int k);


int main(){
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++){	scanf("%d",&ea);	add(i,ea-now);	now=ea;/*add(i,ea)*/;}
//	for(int i=1;i<=n;i++){	cout<<"i="<<i<<" "<<"Tree="<<tree[i]<<" "<<"que="<<query(i)<<endl;}	
		
	for(int i=1;i<=m;i++){
		scanf("%d",&a);
		if(a==1){
			scanf("%d%d%d",&b,&c,&d);
			add(b,d);add(c+1,-d);
		}	
		if(a==2){
			scanf("%d",&e);
			printf("%d\n",query(e));
		}
	}	
	
	return 0;
}

int lowbitt(int k){
	return k&(-k);
}

void add(int x,int k){
	while(x<=n){
		tree[x]+=k;
		x+=lowbitt(x);
	}
}

int query(int x){
	int ans=0;
	while(x!=0){
		ans+=tree[x];
//		cout<<"x="<<x<<" "<<"ans="<<tree[x]<<endl;
		x-=lowbitt(x);
	}
	return ans;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值