Analysis 3 Functions

A function or map f from X to Y is a rule which, for each element of X, specifies exactly one element of Y.
f:XY or XY,Xf(x)
Here f(x)Y is the value of f at x.
The set X is called the domain of f and is denoted dom(f), and Y is the codomain of f.
Finally im(f):=yY;xX:y=f(x) is called the image of f

If f:XY is a function, then
graph(f):=(x,y)X×Y;y=f(x)=(x,f(x))X×Y;xX is called the graph of f. Clearly, the graph of a function is a subset of the Cartesian product X×Y .

3.1 Remark
A function XY is an ordered triple (X, G, Y) with GX×Y such that, for each xX , there is exactly one yY with (x,y)G .
(This definition avoids the useful but imprecise expression ‘rule’ and uses only set theoretical concepts)

3.2 Examples
a. identity function
b. If XY , then i:XY , xx is called the inclusion of X into Y. Note that i=idXX=Y
c. If X and Y are nonempty and bY , then XY , xb is a constant function
d. If f:XY and AX , then f|A:AY , xf(x) is the restriction of f to A. Clearly f|A=fA=X
e. Let AX and g:AY . Then any function f:XY with f|A=g is called an extension of g , written fg.
g. Let Xϕ and AX . Then the characteristic function of A is
χA:X0,1 , x{1,xA0,xAc

Composition of Function
Let f:XY and g:YV be two functions. Then we define a new function gf:XV , xg(f(x))

3.3 Proposition
(hg)f=h(gf)
(associativity of composition)

Commutative Diagrams
Injection, Surjections and Bijections
Let f:XY be a function. Then f is
surjective if im(f)=Y
injective is f(x)=f(y) implies x=y for all x,yX , and
bijective if f is both injective and surjective

3.5 Proposition
Let f:XY be a function. Then f is bijective iff there is a function g:YX such that gf=idX and fg=idY . In this case, g is uniquely determined by f.

Inverse Function
Let f:XY be bijective. Then the inverse function f1 of f is the unique function f1:YX such that ff1=idY and f1f=idX
3.6 Proposition
Let f:XY and g:YV be bijective. Then gf:XV is bijective and
(gf)1=f1g1
Let f:XY be a function and AX . Then
f(A):={f(a)Y;aA}
is called the image of A under f .
For each CY
f1(C):={xX;f(x)C}
is called the preimage of C under f

Set valued Functions
Let f:XY be a function. Then, using the above definitions, we have two ‘induced’ set valued functions.
f:P(X)P(Y),Af(A) and f1:P(Y)P(X),Bf1(B)
If f:XY is bijective, then f1:YX exists and {f1(y)}=f1({y}) for all yY .
If f:XY is not bijective, then only the set valued function f1 is defined.
In either cases, we write f1(y) for f1({y}) and call f1(y)X the fiber of f at y. The fiber f1(y) is simply the solution set {xX;f(x)=y} of the equation f(x)=y . This could be empty.

Finally, we denote the set of all functions from X to Y by Funct (X,Y)
Funct (X,Y) is a subset of P(X×Y) .

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值