文章目录
背景:当数据集规模超级大,很难在内存中完全存下所有数据,因此要按需将数据按需加载到内存。
简单数据导入
依赖torch_geometric.data.Data
, DataLoader
的数据导入
from torch_geometric.data import Data, DataLoader
data_list = [Data(...), ..., Data(...)]
loader = DataLoader(data_list, batch_size=32)
依赖torch_geometric.data.Data
, Batch
的批次导入
from torch_geometric.data import Data, Batch
data_list = [Data(...), ..., Data(...)]
loader = Batch.from_data_list(data_list, batch_size=32)
自定义数据导入
继承Dataset
基类的自定义数据集类
import os.path as osp
import torch
from torch_geometric.data import Dataset, download_url
class MyOwnDataset(Dataset):
def __init__(self, root, transform=None, pre_transform=None):
super(MyOwnDataset, self).__init__(root, transform, pre_transform)
@property
def raw_file_names(self):
return ['raw_file_1', 'raw_file_2', ...]
@property
def processed_file_names(self):
return ['data_1.pt', 'data_2.pt', ...]
def download(self):
path = download_url(url, self.raw_dir)
def process(self):
...
def len(self):
return len(self.processed_file_names)
def get(self, idx):
data = torch.load(osp.join(self.processed_dir, 'data_{}.pt'.format(idx)))
return data
其中,len()
:返回数据集中的样本的数量;get()
:实现加载单个图的操作,在内部,__getitem__()
返回通过调用get()
来获取Data
对象,并根据transform
参数对它们进行选择性转换。
图样本封装成批(BATCHING)
PyTorch Geometric中采用的将多个图封装成批的方式是,将小图作为连通组件(connected component)的形式合并,构建一个大图。于是小图的邻接矩阵存储在大图邻接矩阵的对角线上。大图的邻接矩阵、属性矩阵、预测目标矩阵分别为:
KaTeX parse error: No such environment: split at position 8: \begin{̲s̲p̲l̲i̲t̲}̲\mathbf{A} = \b…
此方法有以下关键的优势:
- 依靠消息传递方案的GNN运算不需要被修改,因为消息仍然不能在属于不同图的两个节点之间交换。
- 没有额外的计算或内存的开销。例如,这个批处理程序的工作完全不需要对节点或边缘特征进行任何填充。请注意,邻接矩阵没有额外的内存开销,因为它们是以稀疏的方式保存的,只保留非零项,即边。
通过torch_geometric.data.DataLoader
类,多个小图被封装成一个大图。torch_geometric.data.DataLoader
是PyTorch的DataLoader
的子类,覆盖了collate()
函数,该函数定义了一列表的样本是如何封装成批的。
小图的属性增值与拼接
将小图存储到大图中时需要对小图的属性做一些修改,一个最显著的例子就是要对节点序号增值。在最一般的形式中,PyTorch Geometric的DataLoader
类会自动对edge_index
张量增值,增加的值为当前被处理图的前面的图的累积节点数量。
默认操作是:
- 对第
k
k
k个图的
edge_index
张量“前面 k − 1 k-1 k−1个图的累积节点数量 n n n”的增量; - 增值后,在第二维中连接所有图的
edge_index
张量([2, num_edges]
)。
通过覆盖torch_geometric.data.__inc__()
和torch_geometric.data.__cat_dim__()
函数可以根据实际需求更改默认操作。其中,__inc__()
定义了两个连续的图的属性之间的增量大小,而__cat_dim__()
定义了同一属性的图形张量应该在哪个维度上被连接起来。
图的匹配(Pairs of Graphs)
背景:在一个Data
对象中存储多个图,例如在图匹配等应用中,需要将若干图正确封装成批。
以下PairData
类将一个源图
G
s
G_s
Gs和一个目标图
G
t
G_t
Gt存储在Data
类中:
class PairData(Data):
def __init__(self, edge_index_s, x_s, edge_index_t, x_t):
super(PairData, self).__init__()
self.edge_index_s = edge_index_s
self.x_s = x_s
self.edge_index_t = edge_index_t
self.x_t = x_t
def __inc__(self, key, value):
if key == 'edge_index_s': # 根据源图G_s的节点数做增值
return self.x_s.size(0)
if key == 'edge_index_t': # 根据目标图G_t的节点数做增值
return self.x_t.size(0)
else:
return super().__inc__(key, value)
上述PairData
类批处理行为的测试如下:
edge_index_s = torch.tensor([
[0, 0, 0, 0],
[1, 2, 3, 4],
])
x_s = torch.randn(5, 16) # 5 nodes.
edge_index_t = torch.tensor([
[0, 0, 0],
[1, 2, 3],
])
x_t = torch.randn(4, 16) # 4 nodes.
data = PairData(edge_index_s, x_s, edge_index_t, x_t)
data_list = [data, data]
loader = DataLoader(data_list, batch_size=2)
batch = next(iter(loader))
print(batch)
# Batch(edge_index_s=[2, 8], x_s=[10, 16], edge_index_t=[2, 6], x_t=[8, 16])
print(batch.edge_index_s)
# tensor([[0, 0, 0, 0, 5, 5, 5, 5], [1, 2, 3, 4, 6, 7, 8, 9]])
print(batch.edge_index_t)
# tensor([[0, 0, 0, 4, 4, 4], [1, 2, 3, 5, 6, 7]])
由于PyTorch Geometric无法识别PairData
对象中实际的图,所以batch
属性(将大图每个节点映射到其各自对应的小图)没有正确工作。此时就需要DataLoader
的follow_batch
参数发挥作用,通过该参数可以指定要为哪些属性维护批信息。
loader = DataLoader(data_list, batch_size=2, follow_batch=['x_s', 'x_t'])
batch = next(iter(loader))
print(batch)
# Batch(edge_index_s=[2, 8], x_s=[10, 16], x_s_batch=[10],
# edge_index_t=[2, 6], x_t=[8, 16], x_t_batch=[8])
print(batch.x_s_batch)
# tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
print(batch.x_t_batch)
# tensor([0, 0, 0, 0, 1, 1, 1, 1])
可以看到,follow_batch=['x_s', 'x_t']
成功地为节点特征x_s'和
x_t’分别创建了名为x_s_batch
和x_t_batch
的赋值向量。这些信息可以用来在一个单一的Batch
对象中对多个图进行聚合操作,例如全局池化。
二部图(Bipartite Graphs)
二部图的邻接矩阵定义两种类型的节点之间的连接关系。一般来说,不同类型的节点数量不需要一致,于是二部图的邻接矩阵
A
∈
{
0
,
1
}
N
×
M
A \in \{0,1\}^{N \times M}
A∈{0,1}N×M可能为平方矩阵,即可能有
N
≠
M
N \neq M
N=M。在二部图的封装成批过程中,edge_index
中边的源节点与目标节点做的增值操作应是不同的。
class BipartiteData(Data):
def __init__(self, edge_index, x_s, x_t):
super(BipartiteData, self).__init__()
self.edge_index = edge_index
self.x_s = x_s
self.x_t = x_t
def __inc__(self, key, value):
if key == 'edge_index': # 在edge_index中独立地为边的源节点和目标节点做增值操作
return torch.tensor([[self.x_s.size(0)], [self.x_t.size(0)]])
else:
return super().__inc__(key, value)
上述BipartiteData
类批处理行为的测试如下:
edge_index = torch.tensor([
[0, 0, 1, 1],
[0, 1, 1, 2],
])
x_s = torch.randn(2, 16) # 2 nodes.
x_t = torch.randn(3, 16) # 3 nodes.
data = BipartiteData(edge_index, x_s, x_t)
data_list = [data, data]
loader = DataLoader(data_list, batch_size=2)
batch = next(iter(loader))
print(batch)
# Batch(edge_index=[2, 8], x_s=[4, 16], x_t=[6, 16])
print(batch.edge_index)
# tensor([[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 1, 2, 3, 4, 4, 5]])
在新的维度上做拼接
Data
对象的属性需要在一个新的维度上做拼接(经典的封装成批),例如图级别属性或预测目标。具体来说,形状为[num_features]
的属性列表应该被返回为[num_examples, num_features]
,而不是[num_examples * num_features]
。PyTorch Geometric通过在__cat_dim__()
中返回一个None
的连接维度来实现这一点。
class MyData(Data): def __cat_dim__(self, key, item): if key == 'foo': return None else: return super().__cat_dim__(key, item)edge_index = torch.tensor([ [0, 1, 1, 2], [1, 0, 2, 1],])foo = torch.randn(16)data = MyData(edge_index=edge_index, foo=foo)data_list = [data, data]loader = DataLoader(data_list, batch_size=2)batch = next(iter(loader))print(batch)# Batch(edge_index=[2, 8], foo=[2, 16])# batch.foo中,2为批维度,16为特征维度
超大规模数据集类实践
PCQM4M-LSC是一个分子图的量子特性回归数据集,包含了3,803,453个图。
import osimport os.path as ospimport pandas as pdimport torchfrom ogb.utils import smiles2graphfrom ogb.utils.torch_util import replace_numpy_with_torchtensorfrom ogb.utils.url import download_url, extract_zipfrom rdkit import RDLoggerfrom torch_geometric.data import Data, Datasetimport shutilRDLogger.DisableLog('rdApp.*')class MyPCQM4MDataset(Dataset): def __init__(self, root): self.url = 'https://dgl-data.s3-accelerate.amazonaws.com/dataset/OGB-LSC/pcqm4m_kddcup2021.zip' super(MyPCQM4MDataset, self).__init__(root) filepath = osp.join(root, 'raw/data.csv.gz') data_df = pd.read_csv(filepath) self.smiles_list = data_df['smiles'] self.homolumogap_list = data_df['homolumogap'] @property def raw_file_names(self): return 'data.csv.gz' def download(self): path = download_url(self.url, self.root) extract_zip(path, self.root) os.unlink(path) shutil.move(osp.join(self.root, 'pcqm4m_kddcup2021/raw/data.csv.gz'), osp.join(self.root, 'raw/data.csv.gz')) def len(self): return len(self.smiles_list) def get(self, idx): smiles, homolumogap = self.smiles_list[idx], self.homolumogap_list[idx] graph = smiles2graph(smiles) assert(len(graph['edge_feat']) == graph['edge_index'].shape[1]) assert(len(graph['node_feat']) == graph['num_nodes']) x = torch.from_numpy(graph['node_feat']).to(torch.int64) edge_index = torch.from_numpy(graph['edge_index']).to(torch.int64) edge_attr = torch.from_numpy(graph['edge_feat']).to(torch.int64) y = torch.Tensor([homolumogap]) num_nodes = int(graph['num_nodes']) data = Data(x, edge_index, edge_attr, y, num_nodes=num_nodes) return data # 获取数据集划分 def get_idx_split(self): split_dict = replace_numpy_with_torchtensor(torch.load(osp.join(self.root, 'pcqm4m_kddcup2021/split_dict.pt'))) return split_dictif __name__ == "__main__": dataset = MyPCQM4MDataset('dataset2') from torch_geometric.data import DataLoader from tqdm import tqdm dataloader = DataLoader(dataset, batch_size=256, shuffle=True, num_workers=4) for batch in tqdm(dataloader): pass
- 在生成一个该数据集类的对象时,程序首先会检查指定的文件夹下是否存在
data.csv.gz
文件,如果不在,则会执行download
方法,这一过程是在运行super
类的__init__
方法中发生的; - 然后程序继续执行
__init__
方法的剩余部分,读取data.csv.gz
文件,获取存储图信息的smiles
格式的字符串,以及回归预测的目标homolumogap
。