Codeforces-1100E:Andrew and Taxi(二分+拓扑排序)

E. Andrew and Taxi
time limit per test 2 seconds
memory limit per test 256 megabytes
inputstandard input
outputstandard output
Andrew prefers taxi to other means of transport, but recently most taxi drivers have been acting inappropriately. In order to earn more money, taxi drivers started to drive in circles. Roads in Andrew’s city are one-way, and people are not necessary able to travel from one part to another, but it pales in comparison to insidious taxi drivers.

The mayor of the city decided to change the direction of certain roads so that the taxi drivers wouldn’t be able to increase the cost of the trip endlessly. More formally, if the taxi driver is on a certain crossroads, they wouldn’t be able to reach it again if he performs a nonzero trip.

Traffic controllers are needed in order to change the direction the road goes. For every road it is known how many traffic controllers are needed to change the direction of the road to the opposite one. It is allowed to change the directions of roads one by one, meaning that each traffic controller can participate in reversing two or more roads.

You need to calculate the minimum number of traffic controllers that you need to hire to perform the task and the list of the roads that need to be reversed.

Input
The first line contains two integers n and m ( 2 ≤ n ≤ 100000 , 1 ≤ m ≤ 100000 ) (2≤n≤100000, 1≤m≤100000) (2n100000,1m100000) — the number of crossroads and the number of roads in the city, respectively.

Each of the following m lines contain three integers u i , v i u_i, v_i ui,vi and c i ( 1 ≤ u i , v i ≤ n , 1 ≤ c i ≤ 1 0 9 , u i ≠ v i ) c_i (1≤u_i,v_i≤n, 1≤c_i≤10^9, u_i≠v_i) ci(1ui,vin,1ci109,ui̸=vi) — the crossroads the road starts at, the crossroads the road ends at and the number of traffic controllers required to reverse this road.

Output
In the first line output two integers the minimal amount of traffic controllers required to complete the task and amount of roads k which should be reversed. k should not be minimized.

In the next line output k integers separated by spaces — numbers of roads, the directions of which should be reversed. The roads are numerated from 1 in the order they are written in the input. If there are many solutions, print any of them.

Examples
input
5 6
2 1 1
5 2 6
2 3 2
3 4 3
4 5 5
1 5 4
output
2 2
1 3
input
5 7
2 1 5
3 2 3
1 3 3
2 4 1
4 3 5
5 4 1
1 5 3
output
3 3
3 4 7

思路:二分答案。那么对于权值小于等于答案的边,我们把其视作无向边,因为我们可以随意的改变其方向,然后对这个图做拓扑排序(忽略无向边的影响),如果有环,那么这个答案小了;否则尝试更小的ans。

找到最优解后,我们查看拓扑序列中的无向边,看哪些需要反向,记下即可。
可以看下这篇文章有助于理解-传送门。

#include<bits/stdc++.h>
using namespace std;
const int MAX=1e5+10;
const int MOD=1e9+7;
const int INF=1e9+7;
typedef long long ll;
struct lenka{int x,y,z;}ed[MAX];
vector<int>e[MAX];
vector<int>QAQ;
int top[MAX],in[MAX];
int n,m;
int check(int QWQ)
{
    for(int i=1;i<=n;i++)e[i].clear();
    memset(in,0,sizeof in);
    for(int i=1;i<=m;i++)
    {
        if(ed[i].z>QWQ)
        {
            e[ed[i].x].push_back(ed[i].y);
            ++in[ed[i].y];
        }
    }
    queue<int>p;
    int cnt=0;
    for(int i=1;i<=n;i++)if(in[i]==0)p.push(i),top[i]=++cnt;
    while(!p.empty())
    {
        int now=p.front();p.pop();
        for(int i=0;i<e[now].size();i++)
        {
            int nex=e[now][i];
            in[nex]--;
            if(in[nex]==0)
            {
                p.push(nex);
                top[nex]=++cnt;
            }
        }
    }
    for(int i=1;i<=n;i++)if(in[i])return 0;
    QAQ.clear();
    for(int i=1;i<=m;i++)if(ed[i].z<=QWQ&&top[ed[i].y]<top[ed[i].x])QAQ.push_back(i);
    return 1;
}
int main()
{
    cin>>n>>m;
    for(int i=1;i<=m;i++)scanf("%d%d%d",&ed[i].x,&ed[i].y,&ed[i].z);
    int l=0,r=1e9,ans=0;
    while(r>=l)
    {
        int mid=(l+r)/2;
        if(check(mid))r=mid-1,ans=mid;
        else l=mid+1;
    }
    check(ans);
    printf("%d %d\n",ans,QAQ.size());
    for(int i=0;i<QAQ.size();i++)cout<<QAQ[i]<<" ";
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值