一、leetcode 518. 零钱兑换 II
1.题目描述:
给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。
示例 1:
- 输入: amount = 5, coins = [1, 2, 5]
- 输出: 4
解释: 有四种方式可以凑成总金额:
- 5=5
- 5=2+2+1
- 5=2+1+1+1
- 5=1+1+1+1+1
示例 2:
- 输入: amount = 3, coins = [2]
- 输出: 0
- 解释: 只用面额2的硬币不能凑成总金额3。
示例 3:
- 输入: amount = 10, coins = [10]
- 输出: 1
注意,你可以假设:
- 0 <= amount (总金额) <= 5000
- 1 <= coin (硬币面额) <= 5000
- 硬币种类不超过 500 种
- 结果符合 32 位符号整数
2.解题思路:
1. 确定dp数组以及下标的含义
dp[j]:凑成总金额j的货币组合数为dp[j]
2. 确定递推公式
dp[j] 就是所有的dp[j - coins[i]](考虑coins[i]的情况)相加。
所以递推公式:dp[j] += dp[j - coins[i]] 。
3. dp数组如何初始化
首先dp[0]一定要为1,dp[0] = 1是 递归公式的基础。如果dp[0] = 0 的话,后面所有推导出来的值都是0了。下标非0的dp[j]初始化为0,这样累计加dp[j - coins[i]]的时候才不会影响真正的dp[j] 。
4. 确定遍历顺序
本题是求凑出来的方案个数,且每个方案个数是为组合数。所以我们只能外层循环遍历硬币面额(物品),内层循环遍历总金额(容量)。
5. 举例推导dp数组
代码如下:
class Solution {
public:
int change(int amount, vector<int>& coins) {
vector<int> dp(amount + 1, 0);
dp[0] = 1;
for (int i = 0; i < coins.size(); i++) { // 遍历物品
for (int j = coins[i]; j <= amount; j++) { // 遍历背包
dp[j] += dp[j - coins[i]];
}
}
return dp[amount];
}
};
三、377. 组合总和 Ⅳ
1.题目描述:
给定一个由正整数组成且不存在重复数字的数组,找出和为给定目标正整数的组合的个数。
示例:
nums = [1, 2, 3] target = 4
所有可能的组合为: (1, 1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 3) (2, 1, 1) (2, 2) (3, 1)
请注意,顺序不同的序列被视作不同的组合。
因此输出为 7。
2.解题思路:
动规五部曲分析如下:
1. 确定dp数组以及下标的含义
dp[i]: 凑成目标正整数为i的排列个数为dp[i]
2. 确定递推公式
dp[i](考虑nums[j])可以由 dp[i - nums[j]](不考虑nums[j]) 推导出来。因为只要得到nums[j],排列个数dp[i - nums[j]],就是dp[i]的一部分。求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]];
3. dp数组如何初始化
因为递推公式dp[i] += dp[i - nums[j]]的缘故,dp[0]要初始化为1,这样递归其他dp[i]的时候才会有数值基础。非0下标的dp[i]应该初始为 0。
4. 确定遍历顺序
个数可以不限使用,说明这是一个完全背包。得到的集合是排列,说明需要考虑元素之间的顺序。如果求排列数就是外层for遍历背包,内层for循环遍历物品。所以本题遍历顺序最终遍历顺序:target(背包)放在外循环,将nums(物品)放在内循环,内循环从前到后遍历。
5. 举例推导dp数组
代码如下:
class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
vector<int> dp(target + 1, 0);
dp[0] = 1;
for (int i = 0; i <= target; i++) { // 遍历背包
for (int j = 0; j < nums.size(); j++) { // 遍历物品
if (i - nums[j] >= 0 && dp[i] < INT_MAX - dp[i - nums[j]]) {
dp[i] += dp[i - nums[j]];
}
}
}
return dp[target];
}
};