本题要求两个给定正整数的最大公约数和最小公倍数。
输入格式:
输入在一行中给出两个正整数M和N(≤1000)。
输出格式:
在一行中顺序输出M和N的最大公约数和最小公倍数,两数字间以1空格分隔。
输入样例:
511 292
结尾无空行
输出样例:
73 2044
结尾无空行
解法一:穷举
#include <stdio.h>
int main()
{
int M,N,x,y,i,a,b;
scanf("%d %d",&x,&y);
if(x>=y)
N=x,M=y;
else M=x,N=y;
for (i=M;i>=1;i--)
{
if (M%i==0&&N%i==0)
break;
}
printf("%d %d",i,M*N/i);
return 0;
}
解法二:辗转相除法
1.辗转相除法:
又名欧几里德算法(Euclidean algorithm),它是已知最古老的算法, 其可追溯至公元前300年前。 ----来源百度百科
辗转:望文生义,就是翻来覆去。相除就很好理解了,就是进行除法运算。
辗转相除法的核心就是不断的让两个数做除法运算。其原理基于两个整数的最大公约数等于其中较小的数和两数的相除余数的最大公约数。
假设两数为 x,y。
先令 z = x % y ;
之后 y 赋给 x 即令 x = y ;
再将 z 赋给 y 即令 y = z;
辗转相减,其终止条件为:y 等于0时。
代码如下:
#include<stdio.h>
int main()
{
int x, y, z, m, n;
printf("请输入两个数:");
scanf_s("%d%d", &x, &y);
m = x, n = y;
while (y != 0)
{
z = x%y;
x = y;
y = z;
}
printf("最大公约数是: %d\n", x);
printf("最小公倍数是: %d\n", m*n / x);
system("pause");
return 0;
}
2.辗转相减法:
即尼考曼彻斯法,其特色是做一系列减法,从而求得最大公约数。----来源百度百科
辗转相减法即通过对两数的不断减法运算。
假设两数为 x, y。
当 x > y 时,令 x = x - y;
反之,则令 y = y - x;
之后一直辗转相减,直至 x = y 时,终止。
代码如下:
#include<stdio.h>
int main()
{
int x, y, m, n;
printf("请输入两个数:");
scanf_s("%d%d", &x, &y);
m = x, n = y;
while (x!=y)
{
if (x>y)
x = x-y;
else
y = y-x;
}
printf("最大公约数是: %d\n", x);
printf("最小公倍数是: %d\n", m*n / x);
system("pause");
return 0;
}
————————————————
版权声明:本文为CSDN博主「露航」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/Zhang_1218/article/details/73196314
这是复制了大佬的,等会了再来看