逆序对的树状数组做法
- 逆序对
对于一个给定序列中的每一个元素,找到它后面比它小的数
洛谷模板题面
顺便说一下一个神奇(玄学)的东西,我树状数组总是会写挂(还不是我太菜了)
经过非常久的尝试,我发现一种在哪个题都不会挂的写法
int lowbit (int x){
return x&(-x);
}
void update(int x,int v){
for(;x<=n;x+=lowbit(x))
c[x]+=v;
}
int query(int x){
int ans=0;
for(;x>0;i-=lowbit(x)){
ans+=c[x];
}
return ans;
树状数组的原理就不多废话了
这里要用到离散化树状数组,离散化大多用来处理较大的数据
我们用a[]存储读入的原数列,因为我们要做的事只是跟数与数的大小关系有关,所以我们把它排序,然后b[i]就是a[i]是数列里第几大的数
很关键的一点是,这里要用stable_sort,因为sort会换两个一样大的数
离散化之后,加入树状数组
记i在数列中是第aa[i]大的数
那么每次在树状数组加入时,在aa[i]处+1
在查询的时候,前面所有数的和就是比它小的数的数量和
那有人会问 这个时候怎么保证你现在加入的在它前面的数后面
因为我们加入是从1-n的 那么 对于正在操作的数,已经在树状数组中的,就只有它前面的(好好体会一下),那么在它前面中,比它小的数量,就在它前面,所以是getsum(i)
要求在它前面并且比它大的,对于每一个i,在原数列中它前面的数是i-1这不是废话么
所以对于这个数为逆序对中后一个的数量就是(i-1)-(getsum(i)-1) 就是(i-getsum(i))
所以就做完了
#include<bits/stdc++.h>
using namespace std;
const int maxm=500010;
struct node{
int v;
int order;
}a[maxm];
int b[maxm],c[maxm];
int n;
bool cmp(node a,node b){
return a.v<b.v;
}
int lowbit(int x){
return x&(-x);
}
void update(int x,int v){
for(;x<=n;x+=lowbit(x))
c[x]+=v;
}
long long ans;
int query(int x){
int ans=0;
for(;x>=1;x-=lowbit(x))
ans+=c[x];
return ans;
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
a[i].order=i;
}
stable_sort(a+1,a+n+1,cmp);
for(int i=1;i<=n;i++)
b[a[i].order]=i;
for(int i=1;i<=n;i++){
update(b[i],1);
ans+=i-query(b[i]);
}
printf("%lld\n",ans);
return 0;
}