树形dp

树形dp方法小结

树形dp是什么?
树形dp就是在树上dp

  • 简单的树形dp

一道例题
树形dp往往跟dfs有很大的联系,我们在做时,可以先dfs然后再dp,也可以一边dfs一边dp
动态规划的核心在于状态的设计与转移

  • 设计状态
    f[i][j]
    第一维表示以i为开始
    第二维表示以j结束
    其实这里就有点像区间dp了,我们再循环的时候只用枚举这个区间的断点,就是转移的中继点。
    状态转移方程如下:

f [ i ] [ j ] = f [ i ] [ k − 1 ] ∗ f [ k + 1 ] [ j ] + f [ k ] [ k ] ; f[i][j]=f[i][k-1]*f[k+1][j]+f[k][k]; f[i][j]=f[i][k1]f[k+1][j]+f[k][k];
通过这题我们学到了啥?
如果你看到一棵树,然后有一个明确的计算权的公式,然后你可以考虑用区间动规的思想,毕竟树的本质是递归乱搞一个三层循环,再做的时候要特别注意一下是顺着循环还是倒着循环。

  • 资源分配型

更难的一题
最经典的树莫过于二叉树了,我们在做多叉树时都要把多叉树转为二叉树。所以你连最简单的二叉树你都不会你就凉了

分析题意,你把它爹剪了它也跟着掉了,在去掉了父节点后,以它为根的子树的苹果全没了。
一看这题输入格式,如果你以前没做过,你就会一脸懵B,这玩意咋变成树啊。
你可以熟练的打出你打了无数遍的邻接表存图(链式前向星),或者你用vector
然后开始dfs,随便从哪一个点开始
对了,这里有一个小细节,我自己总结出来的,可能不对,如果你不能判断出这个树的根咋找,那你就建双向边dfs(你可以把它当作一棵无根树),那你又比如你可以通过一些方式,比如说看入度等,就是说它时一棵有根树,那你就可以建单向边然后直接dfs,但是着也不是绝对的,最重要的就是根据实际的题目来看,OI这个东西本来就是很灵活的
扯远了

我们可以新建一个结构体

struct tree{
	int l,r;
}

然后开始dfs

void dfs(int u,int fa){
    for(int i=head[u];i;i=e[i].next){
        int v=e[i].to,w=e[i].number_of_apple;
        if(v!=fa){
            f[v][1]=w;
            if(!tr[u].l) tr[u].l=v;
            else tr[u].r=v;
            dfs(v,u);
        }
    }
}

这大概就是一个基本模板了,如果左子树为空那它就是左子树,如果不为空那它就是右子树。

建完树后你就可以dp了
其实这个题是个资源分配类的题
你可以这么考虑,你还是像刚刚我写的那样考虑断点,
你就可以得到一个这样的方程
f [ r o o t ] [ j ] = m a x ( f [ r o o t ] [ j ] , f [ v ] [ k ] + f [ r o o t ] [ j − k ] ) f[root][j]=max(f[root][j],f[v][k]+f[root][j-k]) f[root][j]=max(f[root][j],f[v][k]+f[root][jk])
你这个点的状态可以由那些状态转移而来?
你可以很简单的发现,它是由它的子树决定的,毕竟这样是无后效性的
那我们就得到了一个很重要的结论,我们是从叶子节点开始dp的。
注意,我这里说的是算法的原理
树形dp其实就是在递归上做状态的转移
有了这个思想之后你就可以尝试写写代码了
像这样

void dp(int root){
	for(int i=head[root];i;i=e[i].next){
		int v=e[i].to;
		dp(v);
		for(int j=m+1;j>=1;j--){
			for(int k=0;k<j;k++){
				f[root][j]=max(f[root][j],f[v][k]+f[root][j-k]);
			}
		}
	}
}

一个小细节,这个j中是有root这个根节点的,所以最大子树的资源应该是j-1

从这题我们学到了什么
这个题是一个树上资源型二叉树dp
思路还是先dfs建树,然后考虑断点设计状态方程,进行dp,再考虑一些细节,比如说循环的边界条件,顺序等

  • 树上背包
    经典例题
    看完题,只有选了父节点才能选它的子节点,很容易想到状态的第一维是根;然后你只能选一些,那第二维就是分配的资源数,就是课的个数了
    f [ r o o t ] [ j ] = m a x ( f [ r o o t ] [ j ] , f [ v ] [ k ] + f [ r o o t ] [ j − k ] ) ; f[root][j]=max(f[root][j],f[v][k]+f[root][j-k]); f[root][j]=max(f[root][j],f[v][k]+f[root][jk]);
    没错,还是他
    然后你还是像上一题一样递归,但是这题是个森林,你要处理这个问题,最简单的方法还是加一个根节点,原来每棵树的根就是它,那森林就变成一棵树了
    再看下代码就应该懂了,毕竟写的还是简单易懂的
#include<bits/stdc++.h>
using namespace std;
int n,m;
const int maxm=400; 
struct node{
	int to;
	int next;
	int w;
}e[maxm];

int head[maxm],cnt,f[400][400];

void add(int u,int v){
	e[++cnt].next=head[u];
	e[cnt].to=v;
	head[u]=cnt;	
}

void dp(int root){
	for(int i=head[root];i;i=e[i].next){
		int v=e[i].to;
		dp(v);
		for(int j=m+1;j>=1;j--){
			for(int k=0;k<j;k++){
				f[root][j]=max(f[root][j],f[v][k]+f[root][j-k]);
			}
		}
	}
}

int main(){
	cin>>n>>m;
	for(int i=1;i<=n;i++){
		int x,y;
		cin>>x>>y;
		add(x,i);
		f[i][1]=y;
	}
	dp(0);
	cout<<f[0][m+1]<<endl;///把0作为一个点,加入这棵树进行dp(作为根节点),那么就要取m+1门课 
	return 0;
	
}

一道经典例题
思路跟上题差不多,详细的都在代码注释里

#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std;
const int maxm=1000000;
struct node{
	int next;
	int to;
}e[maxm];
int head[maxm],rd[maxm],cnt,f[400][400];
void add(int u,int v){
	e[++cnt].next=head[u];
	e[cnt].to=v;
	head[u]=cnt;
}
int n,m; 
int ans=inf;
void dfs(int u,int fa){
	 
	f[u][1]=rd[u];//在这些边中,有那么一条是连着它和它父节点的,那么你在下面dp的时候,这个边应该
	//已经被减去了,因为你是向下dfs的过程嘛,那么这条边在u中算了一次,在v中算了一次,-2 
	for(int k=head[u];k;k=e[k].next){
		int v=e[k].to;
/*		
		在树上背包的时候一定要记住,第一层循环的是总容量,倒序循环(子树的子节点总和) 
		第二层 当前节点的子节点选择情况,即对于给定的容量,当前子树的最优解,正序循环 
*/
 
		if(v!=fa){  
			dfs(v,u);
			for(int i=m;i>=1;i--){//一共要m个子节点(边) 
				for(int j=1;j<=i;j++){//我儿子切(j),这里一定要记住枚举的是子树分割的情况,因为这是一个dfs
				//的过程,那么当前节点的其他子节点还正在递归的过程中,所以通过枚举子节点取得个数
				//反推当前节点切掉的个数 
					f[u][i]=min(f[u][i],f[v][j]+f[u][i-j]-2);
				}
			}
		}
	}
}
int main(){
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n-1;i++){
		int u,v;
		scanf("%d%d",&u,&v);
		add(u,v);
		add(v,u);
		rd[u]++;
		rd[v]++;
	}
	memset(f,inf,sizeof(f));
	dfs(1,0);//我们对于有根树,建立单向边,从root开始dfs,对于无根树,建立双向边,把1当作根进行dfs
	for(int i=1;i<=n;i++){
		ans=min(ans,f[i][m]);//f[i][j] [i]第i个节点,[j]保留[j]个结点最少要删去的边数 
	} 
	printf("%d\n",ans);
	return 0;
}

没有上司的舞会
这题也是很有代表性的一题了,就是一条边上至多能取一个点的问题。
类似这样的问题还有,战略游戏
具体的他们是怎么样我真的说不清楚,就是那种对于一定边上点的取舍的限制型题目吧。
这种题就是关于一个点取不取的问题了,我们把0记作不取,1记作取
那么当前点取得时候,他的所有儿子不能取;0就是在儿子当中选择取或不取了
f [ u ] [ 1 ] = m a x ( m a x ( f [ u ] [ 1 ] , f [ u ] [ 1 ] + f [ v ] [ 0 ] ) , f [ v ] [ 0 ] ) ; f[u][1]=max(max(f[u][1],f[u][1]+f[v][0]),f[v][0]); f[u][1]=max(max(f[u][1],f[u][1]+f[v][0]),f[v][0]); f [ u ] [ 0 ] = m a x ( m a x ( f [ u ] [ 0 ] , f [ u ] [ 0 ] + f [ v ] [ 1 ] ) , m a x ( f [ v ] [ 0 ] , f [ v ] [ 1 ] ) ) ; f[u][0]=max(max(f[u][0],f[u][0]+f[v][1]),max(f[v][0],f[v][1])); f[u][0]=max(max(f[u][0],f[u][0]+f[v][1]),max(f[v][0],f[v][1]));
得到了方程就很好做了,代码就不贴了

  • 数字变换
    讲道理,这题还是很有意思的。
    我们经常会碰到一些像是小学奥数的题目;那你除了找规律之外,你往往还要想到图论。其实图论的一大难点在于你根本看不出来这是个图论,而且你也不知道咋建图,其实这题本身还是很水的。
    你可以把每一种转换,当成一条边
    就是说一个数它的约数和如果小于它,他们之间就可以相互转换
    那你就会想到建一条双向边对吧
    怎么统计约数和呢,这里提供一种统计约束的方法。
int b[1010][1010]; 
int a[1010];
int n;
void solve(){
	for(int i=1;i<=n;i++){
		for(int j=2;j<=n/i;j++){
			if(i*j>n) continue;
			a[i*j]++;
			b[i*j][a[i*j]]=j;
		}
	}
} 

相信有了我的提示之后
接下来你就可以很快切掉了吧

python023基于Python旅游景点推荐系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
JSP基于SSM网上医院预约挂号系统毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值