树形dp方法小结
树形dp是什么?
树形dp就是在树上dp
- 简单的树形dp
一道例题
树形dp往往跟dfs有很大的联系,我们在做时,可以先dfs然后再dp,也可以一边dfs一边dp
动态规划的核心在于状态的设计与转移
- 设计状态
f[i][j]
第一维表示以i为开始
第二维表示以j结束
其实这里就有点像区间dp了,我们再循环的时候只用枚举这个区间的断点,就是转移的中继点。
状态转移方程如下:
f
[
i
]
[
j
]
=
f
[
i
]
[
k
−
1
]
∗
f
[
k
+
1
]
[
j
]
+
f
[
k
]
[
k
]
;
f[i][j]=f[i][k-1]*f[k+1][j]+f[k][k];
f[i][j]=f[i][k−1]∗f[k+1][j]+f[k][k];
通过这题我们学到了啥?
如果你看到一棵树,然后有一个明确的计算权的公式,然后你可以考虑用区间动规的思想,毕竟树的本质是递归,乱搞一个三层循环,再做的时候要特别注意一下是顺着循环还是倒着循环。
- 资源分配型
更难的一题
最经典的树莫过于二叉树了,我们在做多叉树时都要把多叉树转为二叉树。所以你连最简单的二叉树你都不会你就凉了
分析题意,你把它爹剪了它也跟着掉了,在去掉了父节点后,以它为根的子树的苹果全没了。
一看这题输入格式,如果你以前没做过,你就会一脸懵B,这玩意咋变成树啊。
你可以熟练的打出你打了无数遍的邻接表存图(链式前向星),或者你用vector
然后开始dfs,随便从哪一个点开始
对了,这里有一个小细节,我自己总结出来的,可能不对,如果你不能判断出这个树的根咋找,那你就建双向边dfs(你可以把它当作一棵无根树),那你又比如你可以通过一些方式,比如说看入度等,就是说它时一棵有根树,那你就可以建单向边然后直接dfs,但是着也不是绝对的,最重要的就是根据实际的题目来看,OI这个东西本来就是很灵活的
扯远了
我们可以新建一个结构体
struct tree{
int l,r;
}
然后开始dfs
void dfs(int u,int fa){
for(int i=head[u];i;i=e[i].next){
int v=e[i].to,w=e[i].number_of_apple;
if(v!=fa){
f[v][1]=w;
if(!tr[u].l) tr[u].l=v;
else tr[u].r=v;
dfs(v,u);
}
}
}
这大概就是一个基本模板了,如果左子树为空那它就是左子树,如果不为空那它就是右子树。
建完树后你就可以dp了
其实这个题是个资源分配类的题
你可以这么考虑,你还是像刚刚我写的那样考虑断点,
你就可以得到一个这样的方程
f
[
r
o
o
t
]
[
j
]
=
m
a
x
(
f
[
r
o
o
t
]
[
j
]
,
f
[
v
]
[
k
]
+
f
[
r
o
o
t
]
[
j
−
k
]
)
f[root][j]=max(f[root][j],f[v][k]+f[root][j-k])
f[root][j]=max(f[root][j],f[v][k]+f[root][j−k])
你这个点的状态可以由那些状态转移而来?
你可以很简单的发现,它是由它的子树决定的,毕竟这样是无后效性的
那我们就得到了一个很重要的结论,我们是从叶子节点开始dp的。
注意,我这里说的是算法的原理
树形dp其实就是在递归上做状态的转移
有了这个思想之后你就可以尝试写写代码了
像这样
void dp(int root){
for(int i=head[root];i;i=e[i].next){
int v=e[i].to;
dp(v);
for(int j=m+1;j>=1;j--){
for(int k=0;k<j;k++){
f[root][j]=max(f[root][j],f[v][k]+f[root][j-k]);
}
}
}
}
一个小细节,这个j中是有root这个根节点的,所以最大子树的资源应该是j-1
从这题我们学到了什么
这个题是一个树上资源型二叉树dp
思路还是先dfs建树,然后考虑断点设计状态方程,进行dp,再考虑一些细节,比如说循环的边界条件,顺序等
- 树上背包
经典例题
看完题,只有选了父节点才能选它的子节点,很容易想到状态的第一维是根;然后你只能选一些,那第二维就是分配的资源数,就是课的个数了
f [ r o o t ] [ j ] = m a x ( f [ r o o t ] [ j ] , f [ v ] [ k ] + f [ r o o t ] [ j − k ] ) ; f[root][j]=max(f[root][j],f[v][k]+f[root][j-k]); f[root][j]=max(f[root][j],f[v][k]+f[root][j−k]);
没错,还是他
然后你还是像上一题一样递归,但是这题是个森林,你要处理这个问题,最简单的方法还是加一个根节点,原来每棵树的根就是它,那森林就变成一棵树了
再看下代码就应该懂了,毕竟写的还是简单易懂的
#include<bits/stdc++.h>
using namespace std;
int n,m;
const int maxm=400;
struct node{
int to;
int next;
int w;
}e[maxm];
int head[maxm],cnt,f[400][400];
void add(int u,int v){
e[++cnt].next=head[u];
e[cnt].to=v;
head[u]=cnt;
}
void dp(int root){
for(int i=head[root];i;i=e[i].next){
int v=e[i].to;
dp(v);
for(int j=m+1;j>=1;j--){
for(int k=0;k<j;k++){
f[root][j]=max(f[root][j],f[v][k]+f[root][j-k]);
}
}
}
}
int main(){
cin>>n>>m;
for(int i=1;i<=n;i++){
int x,y;
cin>>x>>y;
add(x,i);
f[i][1]=y;
}
dp(0);
cout<<f[0][m+1]<<endl;///把0作为一个点,加入这棵树进行dp(作为根节点),那么就要取m+1门课
return 0;
}
一道经典例题
思路跟上题差不多,详细的都在代码注释里
#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std;
const int maxm=1000000;
struct node{
int next;
int to;
}e[maxm];
int head[maxm],rd[maxm],cnt,f[400][400];
void add(int u,int v){
e[++cnt].next=head[u];
e[cnt].to=v;
head[u]=cnt;
}
int n,m;
int ans=inf;
void dfs(int u,int fa){
f[u][1]=rd[u];//在这些边中,有那么一条是连着它和它父节点的,那么你在下面dp的时候,这个边应该
//已经被减去了,因为你是向下dfs的过程嘛,那么这条边在u中算了一次,在v中算了一次,-2
for(int k=head[u];k;k=e[k].next){
int v=e[k].to;
/*
在树上背包的时候一定要记住,第一层循环的是总容量,倒序循环(子树的子节点总和)
第二层 当前节点的子节点选择情况,即对于给定的容量,当前子树的最优解,正序循环
*/
if(v!=fa){
dfs(v,u);
for(int i=m;i>=1;i--){//一共要m个子节点(边)
for(int j=1;j<=i;j++){//我儿子切(j),这里一定要记住枚举的是子树分割的情况,因为这是一个dfs
//的过程,那么当前节点的其他子节点还正在递归的过程中,所以通过枚举子节点取得个数
//反推当前节点切掉的个数
f[u][i]=min(f[u][i],f[v][j]+f[u][i-j]-2);
}
}
}
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n-1;i++){
int u,v;
scanf("%d%d",&u,&v);
add(u,v);
add(v,u);
rd[u]++;
rd[v]++;
}
memset(f,inf,sizeof(f));
dfs(1,0);//我们对于有根树,建立单向边,从root开始dfs,对于无根树,建立双向边,把1当作根进行dfs
for(int i=1;i<=n;i++){
ans=min(ans,f[i][m]);//f[i][j] [i]第i个节点,[j]保留[j]个结点最少要删去的边数
}
printf("%d\n",ans);
return 0;
}
没有上司的舞会
这题也是很有代表性的一题了,就是一条边上至多能取一个点的问题。
类似这样的问题还有,战略游戏
具体的他们是怎么样我真的说不清楚,就是那种对于一定边上点的取舍的限制型题目吧。
这种题就是关于一个点取不取的问题了,我们把0记作不取,1记作取
那么当前点取得时候,他的所有儿子不能取;0就是在儿子当中选择取或不取了
f
[
u
]
[
1
]
=
m
a
x
(
m
a
x
(
f
[
u
]
[
1
]
,
f
[
u
]
[
1
]
+
f
[
v
]
[
0
]
)
,
f
[
v
]
[
0
]
)
;
f[u][1]=max(max(f[u][1],f[u][1]+f[v][0]),f[v][0]);
f[u][1]=max(max(f[u][1],f[u][1]+f[v][0]),f[v][0]);
f
[
u
]
[
0
]
=
m
a
x
(
m
a
x
(
f
[
u
]
[
0
]
,
f
[
u
]
[
0
]
+
f
[
v
]
[
1
]
)
,
m
a
x
(
f
[
v
]
[
0
]
,
f
[
v
]
[
1
]
)
)
;
f[u][0]=max(max(f[u][0],f[u][0]+f[v][1]),max(f[v][0],f[v][1]));
f[u][0]=max(max(f[u][0],f[u][0]+f[v][1]),max(f[v][0],f[v][1]));
得到了方程就很好做了,代码就不贴了
- 数字变换
讲道理,这题还是很有意思的。
我们经常会碰到一些像是小学奥数的题目;那你除了找规律之外,你往往还要想到图论。其实图论的一大难点在于你根本看不出来这是个图论,而且你也不知道咋建图,其实这题本身还是很水的。
你可以把每一种转换,当成一条边
就是说一个数它的约数和如果小于它,他们之间就可以相互转换
那你就会想到建一条双向边对吧
怎么统计约数和呢,这里提供一种统计约束的方法。
int b[1010][1010];
int a[1010];
int n;
void solve(){
for(int i=1;i<=n;i++){
for(int j=2;j<=n/i;j++){
if(i*j>n) continue;
a[i*j]++;
b[i*j][a[i*j]]=j;
}
}
}
相信有了我的提示之后
接下来你就可以很快切掉了吧