v$datafile_header中FUZZY

FUZZY也是用于表示数据文件 status的一个选项。

在v9.0.1及之前的版本,FUZZY可以用于标识数据文件是不是处于hot backup状态
当一个数据文件begin backup 时,fuzzy列即为yes,当end backup时这一列又被置为null
在9.2之后的版本,当数据库打开后,fuzzy这一列便为yes了
此时已不用于表示数据文件备份状态了,或者说即便表示也是不准确的了
当数据文件为read write状态且为online时,则fuzzy列为yes
当数据文件为read only或offline时,则fuzzy为no。
修改和补充下列代码得到十折交叉验证的平均auc值和平均aoc曲线,平均分类报告以及平均混淆矩阵 min_max_scaler = MinMaxScaler() X_train1, X_test1 = x[train_id], x[test_id] y_train1, y_test1 = y[train_id], y[test_id] # apply the same scaler to both sets of data X_train1 = min_max_scaler.fit_transform(X_train1) X_test1 = min_max_scaler.transform(X_test1) X_train1 = np.array(X_train1) X_test1 = np.array(X_test1) config = get_config() tree = gcForest(config) tree.fit(X_train1, y_train1) y_pred11 = tree.predict(X_test1) y_pred1.append(y_pred11 X_train.append(X_train1) X_test.append(X_test1) y_test.append(y_test1) y_train.append(y_train1) X_train_fuzzy1, X_test_fuzzy1 = X_fuzzy[train_id], X_fuzzy[test_id] y_train_fuzzy1, y_test_fuzzy1 = y_sampled[train_id], y_sampled[test_id] X_train_fuzzy1 = min_max_scaler.fit_transform(X_train_fuzzy1) X_test_fuzzy1 = min_max_scaler.transform(X_test_fuzzy1) X_train_fuzzy1 = np.array(X_train_fuzzy1) X_test_fuzzy1 = np.array(X_test_fuzzy1) config = get_config() tree = gcForest(config) tree.fit(X_train_fuzzy1, y_train_fuzzy1) y_predd = tree.predict(X_test_fuzzy1) y_pred.append(y_predd) X_test_fuzzy.append(X_test_fuzzy1) y_test_fuzzy.append(y_test_fuzzy1)y_pred = to_categorical(np.concatenate(y_pred), num_classes=3) y_pred1 = to_categorical(np.concatenate(y_pred1), num_classes=3) y_test = to_categorical(np.concatenate(y_test), num_classes=3) y_test_fuzzy = to_categorical(np.concatenate(y_test_fuzzy), num_classes=3) print(y_pred.shape) print(y_pred1.shape) print(y_test.shape) print(y_test_fuzzy.shape) # 深度森林 report1 = classification_report(y_test, y_prprint("DF",report1) report = classification_report(y_test_fuzzy, y_pred) print("DF-F",report) mse = mean_squared_error(y_test, y_pred1) rmse = math.sqrt(mse) print('深度森林RMSE:', rmse) print('深度森林Accuracy:', accuracy_score(y_test, y_pred1)) mse = mean_squared_error(y_test_fuzzy, y_pred) rmse = math.sqrt(mse) print('F深度森林RMSE:', rmse) print('F深度森林Accuracy:', accuracy_score(y_test_fuzzy, y_pred)) mse = mean_squared_error(y_test, y_pred) rmse = math.sqrt(mse) print('F?深度森林RMSE:', rmse) print('F?深度森林Accuracy:', accuracy_score(y_test, y_pred))
06-02
以下是修改和补充后的代码,实现了十折交叉验证的平均auc值和平均aoc曲线,平均分类报告以及平均混淆矩阵: ```python from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import classification_report, confusion_matrix, roc_curve, auc from sklearn.model_selection import StratifiedKFold min_max_scaler = MinMaxScaler() X_train, X_test, y_train, y_test = [], [], [], [] X_train_fuzzy, X_test_fuzzy, y_train_fuzzy, y_test_fuzzy = [], [], [], [] y_pred, y_pred1 = [], [] y_pred_proba, y_pred_proba1 = [], [] config = get_config() tree = gcForest(config) skf = StratifiedKFold(n_splits=10) for train_id, test_id in skf.split(x, y): # split data and normalize X_train1, X_test1 = x[train_id], x[test_id] y_train1, y_test1 = y[train_id], y[test_id] X_train1 = min_max_scaler.fit_transform(X_train1) X_test1 = min_max_scaler.transform(X_test1) X_train1 = np.array(X_train1) X_test1 = np.array(X_test1) # train gcForest tree.fit(X_train1, y_train1) # predict on test set y_pred11 = tree.predict(X_test1) y_pred_proba11 = tree.predict_proba(X_test1) # append predictions and test data y_pred1.append(y_pred11) y_pred_proba1.append(y_pred_proba11) X_train.append(X_train1) X_test.append(X_test1) y_test.append(y_test1) y_train.append(y_train1) # split fuzzy data and normalize X_train_fuzzy1, X_test_fuzzy1 = X_fuzzy[train_id], X_fuzzy[test_id] y_train_fuzzy1, y_test_fuzzy1 = y_sampled[train_id], y_sampled[test_id] X_train_fuzzy1 = min_max_scaler.fit_transform(X_train_fuzzy1) X_test_fuzzy1 = min_max_scaler.transform(X_test_fuzzy1) X_train_fuzzy1 = np.array(X_train_fuzzy1) X_test_fuzzy1 = np.array(X_test_fuzzy1) # train gcForest on fuzzy data tree.fit(X_train_fuzzy1, y_train_fuzzy1) # predict on fuzzy test set y_predd = tree.predict(X_test_fuzzy1) y_predd_proba = tree.predict_proba(X_test_fuzzy1) # append predictions and test data y_pred.append(y_predd) y_pred_proba.append(y_predd_proba) X_test_fuzzy.append(X_test_fuzzy1) y_test_fuzzy.append(y_test_fuzzy1) # concatenate and convert to categorical y_pred = to_categorical(np.concatenate(y_pred), num_classes=3) y_pred1 = to_categorical(np.concatenate(y_pred1), num_classes=3) y_test = to_categorical(np.concatenate(y_test), num_classes=3) y_test_fuzzy = to_categorical(np.concatenate(y_test_fuzzy), num_classes=3) # calculate and print average accuracy and RMSE mse = mean_squared_error(y_test, y_pred1) rmse = math.sqrt(mse) print('深度森林RMSE:', rmse) print('深度森林Accuracy:', accuracy_score(y_test, y_pred1)) mse = mean_squared_error(y_test_fuzzy, y_pred) rmse = math.sqrt(mse) print('F深度森林RMSE:', rmse) print('F深度森林Accuracy:', accuracy_score(y_test_fuzzy, y_pred)) mse = mean_squared_error(y_test, y_pred) rmse = math.sqrt(mse) print('F?深度森林RMSE:', rmse) print('F?深度森林Accuracy:', accuracy_score(y_test, y_pred)) # calculate and print average classification report report1 = classification_report(y_test, y_pred1) print("DF", report1) report = classification_report(y_test_fuzzy, y_pred) print("DF-F", report) # calculate and print average confusion matrix cm1 = confusion_matrix(y_test.argmax(axis=1), y_pred1.argmax(axis=1)) cm = confusion_matrix(y_test_fuzzy.argmax(axis=1), y_pred.argmax(axis=1)) print('DF Confusion Matrix:') print(cm1) print('DF-F Confusion Matrix:') print(cm) # calculate and print average ROC curve and AUC value fpr1, tpr1, threshold1 = roc_curve(y_test.ravel(), y_pred_proba1.ravel()) fpr, tpr, threshold = roc_curve(y_test_fuzzy.ravel(), y_pred_proba.ravel()) roc_auc1 = auc(fpr1, tpr1) roc_auc = auc(fpr, tpr) print('DF ROC AUC:', roc_auc1) print('DF-F ROC AUC:', roc_auc) # plot average ROC curve plt.title('Receiver Operating Characteristic') plt.plot(fpr1, tpr1, 'b', label = 'DF AUC = %0.2f' % roc_auc1) plt.plot(fpr, tpr, 'g', label = 'DF-F AUC = %0.2f' % roc_auc) plt.legend(loc = 'lower right') plt.plot([0, 1], [0, 1],'r--') plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值