很好的单调队列题。
题目传送门
题目意思:
给定一个 n × m n\times m n×m 的矩阵,求出所有大小为 a × b a\times b a×b 的子矩形中的最小值的和。
思路:
- 通过题目给的要求建立二维数组 h h h。
- 通过单调队列一行一行地扫,将扫出来地一个新的数组另存。
- 再通过单调队列一列一列扫,这一次一边扫一遍求出 a n s ans ans 的值。最后输出即可。
代码:
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N=9e6+10;
int n,m,a,b;
int x,y,z;
int g[N];
int h[3005][3005];
int hh[3005][3005];
int ans;
signed main()
{
cin>>n>>m>>a>>b>>g[0]>>x>>y>>z;
for(int i=1;i<=N;i++)
g[i]=(g[i-1]*x+y)%z;
for(int i=1;i<=n;i++)//建造高度数组
for(int j=1;j<=m;j++)
h[i][j]=g[(i-1)*m+j-1];
for(int i=1;i<=n;i++)//扫行
{
deque<int>q;//双端队列
for(int j=1;j<=m;j++)
{
//如果超出窗口的范围了,就出队
while(!q.empty()&&q.front()<=j-b)
q.pop_front();
//如果高度搞过枚举的高度,出队
while(!q.empty()&&h[i][q.back()]>=h[i][j])
q.pop_back();
q.push_back(j);
hh[i][j]=h[i][q.front()];
//用新建的数组保存新的值
}
}
for(int j=1;j<=m;j++)//扫列
{
deque<int>q;
for(int i=1;i<=n;i++)
{
//超出范围就出队
while(!q.empty()&&q.front()<=i-a)
q.pop_front();
//不符合要求就出队
while(!q.empty()&&hh[q.back()][j]>=hh[i][j])
q.pop_back();
q.push_back(i);
if(i>=a&&j>=b)//保存答案
ans+=hh[q.front()][j];
}
}
cout<<ans;
return 0;
}
完美撒花~