不知道为什么,看到这道题就直接想用广搜来做,然后神奇地过了!
题目传送门
题目意思:
给你 n n n 个数 v v v,你可以对它进行两种操作:将 v v v 变成 ( v + 1 ) % 32768 (v + 1) \% 32768 (v+1)%32768 或者 2 × v % 32768 2\times v\%32768 2×v%32768,求将 v v v 变成 0 0 0 需要的最少的操作数。
思路:
- 首先我们发现 n n n 和 v v v 最大只有 32768 32768 32768,所以广搜时间不会爆。
- 于是我们用广搜将一个数的所有情况枚举并取变成 0 0 0 的最少操作数即可。
代码:
#include<iostream>
#include<queue>
#include<string.h>
using namespace std;
struct node
{
int x;
int s;
};
int bfs(int x)
{
int vis[50000];//标记当前状态是否遇过
memset(vis,0,sizeof vis);
queue<node>q;
q.push(node{x,0});
vis[x]=1;
if(x==0)return 0;//如果是0直接返回0步
while(!q.empty())
{
node t=q.front();
q.pop();
if(((t.x+1)%32768==0)||((2*t.x)%32768==0))
return t.s+1;//变成0了就输出步数
if(!vis[(t.x+1)%32768])
{//第一种操作
q.push(node{(t.x+1)%32768,t.s+1});
vis[(t.x+1)%32768]=1;
}
if(!vis[(2*t.x)%32768])
{//第二种操作
q.push(node{(2*t.x)%32768,t.s+1});
vis[(2*t.x)%32768]=1;
}
}
return -1;
}
int main()
{
int n;
cin>>n;
for(int i=1,x;i<=n;i++)
{
cin>>x;
cout<<bfs(x)<<" ";
}
return 0;
}
完美撒花~