1.什么是时间复杂度和空间复杂度?
2.如何计算常见算法的时间复杂度和空间复杂度?
正文开始
1.
什么是时间复杂度和空间复杂度?
1.1
算法效率
算法效率分析分为两种:第一种是时间效率,第二种是空间效率
。
时间效率被称为时间复杂度,
而空间效率被称作空间复杂度。 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主
要衡量一个算法所需要的额外空间,在计算机发展的早期,计算机的存储容量很小。所以对空间
复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。
所以我们如今已经不需要再特别关注一个算法的空间复杂度。
1.2
时间复杂度的概念
时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运
行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机
器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻
烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比
例,
算法中的基本操作的执行次数,为算法的时间复杂度。
1.3
空间复杂度的概念
空间复杂度是对一个算法在运行过程中
临时占用存储空间大小的量度
。空间复杂度不是程序占用
了多少
bytes
的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计
算规则基本跟实践复杂度类似,也使用
大
O
渐进表示法
。
1.4
复杂度计算在算法的意义
2.1
如何计算常见算法的时间复杂度?
2.2
大
O
的渐进表示法
Func1
执行的基本操作次数 :
N = 10 F(N) = 130
N = 100 F(N) = 10210
N = 1000 F(N) = 1002010
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要
大概执行次
数,那么这里我们使用大O的渐进表示法。
大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大
O
阶方法:
1
、用常数
1
取代运行时间中的所有加法常数。
2
、在修改后的运行次数函数中,只保留最高阶项。
3
、如果最高阶项存在且不是
1
,则去除与这个项目相乘的常数。得到的结果就是大
O
阶。
使用大
O
的渐进表示法以后,
Func1
的时间复杂度为:
通过上面我们会发现大
O
的渐进表示法
去掉了那些对结果影响不大的项
,简洁明了的表示出了执
行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数
(
上界
)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数
(
下界
)
例如:在一个长度为
N
数组中搜索一个数据
x
最好情况:
1
次找到
最坏情况:
N
次找到
平均情况:
N/2
次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)
2.3
常见时间复杂度计算举例
实例
1
:
// 计算Func2的时间复杂度?
void Func2(int N)
{
int count = 0;
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}
// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
assert(a);
int begin = 0;
int end = n;
while (begin < end)
{
int mid = begin + ((end-begin)>>1);
if (a[mid] < x)
begin = mid+1;
else if (a[mid] > x)
end = mid;
else
return mid;
}
return -1;
}
实例答案及分析:
1.
实例
1
基本操作执行了
2N+10
次,通过推导大
O
阶方法知道,时间复杂度为
O(N)
2.
实例
2
基本操作执行了
M+N
次,有两个未知数
M
和
N
,时间复杂度为
O(N+M)
3.
实例
3
基本操作执行了
10
次,通过推导大
O
阶方法,时间复杂度为
O(1)
4.
实例
4
基本操作执行最好
1
次,最坏
N
次,时间复杂度一般看最坏,时间复杂度为
O(N)
5.
实例
5
基本操作执行最好
N
次,最坏执行了
(N*(N+1)/2
次,通过推导大
O
阶方法
+
时间复杂度
一般看最坏,时间复杂度为
O(N^2)
6.
实例
6
基本操作执行最好
1
次,最坏
O(logN)
次,时间复杂度为
O(logN) ps
:
logN
在算法分析
中表示是底数为
2
,对数为
N
。有些地方会写成
lgN
。(建议通过折纸查找的方式讲解
logN
是
怎么计算出来的)
7.
实例
7
通过计算分析发现基本操作递归了
N
次,时间复杂度为
O(N)
。
复杂度对比:
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
2.2.常见空间复杂度的计算
空间复杂度是对一个算法在运行过程中
临时占用存储空间大小的量度
。空间复杂度不是程序占用
了多少
bytes
的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计
算规则基本跟实践复杂度类似,也使用
大
O
渐进表示法
。
实例
1
:
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
实例2:
// 计算Fibonacci的空间复杂度?
long long* Fibonacci(size_t n)
{
if(n==0)
return NULL;
long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n ; ++i)
{
fibArray[i ] = fibArray[ i - 1] + fibArray [i - 2];
}
return fibArray ;
}
实例3:
// 计算阶乘递归Factorial的空间复杂度?
long long Factorial(size_t N)
{
return N < 2 ? N : Factorial(N-1)*N;
}
实例答案及分析:
1. 实例 1 使用了常数个额外空间,所以空间复杂度为 O(1)2. 实例 2 动态开辟了 N 个空间,空间复杂度为 O(N)3. 实例 3 递归调用了 N 次,开辟了 N 个栈帧,每个栈帧使用了常数个空间。空间复杂度为 O(N)
补充一些算法题:
O(1)时间复杂度:指的是算法的运行次数和这个问题的规模的关系不大,也就是算法只执行固定次数
O(n)时间复杂度:指的是算法运行次数和规模呈现线性关系,其实这个大o表示法,算的是一个人大体值,也就是说O(1/100*n)和O(100*n),虽然都是O(n),但是还是有差距的
O(n^2)时间复杂度:一般是循环套循环来的
O(1ogn)时间复杂度:
O(nm)时间复杂度:
O(n+m)时间复杂度:不能确定n和m谁影响规模
总结一下:时间复杂度其实算的就是运行次数,空间复杂度算的就是所以变量加起来的值
完!