史上最全时间复杂度和空间复杂度计算

1.什么是时间复杂度和空间复杂度?

2.如何计算常见算法的时间复杂度和空间复杂度?


正文开始

1. 什么是时间复杂度和空间复杂度?
1.1 算法效率
算法效率分析分为两种:第一种是时间效率,第二种是空间效率 时间效率被称为时间复杂度,
而空间效率被称作空间复杂度。 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主
要衡量一个算法所需要的额外空间,在计算机发展的早期,计算机的存储容量很小。所以对空间
复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。
所以我们如今已经不需要再特别关注一个算法的空间复杂度。
1.2 时间复杂度的概念
时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运
行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机
器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻
烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比
例, 算法中的基本操作的执行次数,为算法的时间复杂度。
1.3 空间复杂度的概念
空间复杂度是对一个算法在运行过程中 临时占用存储空间大小的量度 。空间复杂度不是程序占用
了多少 bytes 的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计
算规则基本跟实践复杂度类似,也使用 O 渐进表示法
1.4 复杂度计算在算法的意义
2.1 如何计算常见算法的时间复杂度?
  2.2 O 的渐进表示法
Func1 执行的基本操作次数 :
N = 10 F(N) = 130
N = 100 F(N) = 10210
N = 1000 F(N) = 1002010
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要 大概执行次
数,那么这里我们使用大O的渐进表示法。
大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大 O 阶方法:
1 、用常数 1 取代运行时间中的所有加法常数。
2 、在修改后的运行次数函数中,只保留最高阶项。
3 、如果最高阶项存在且不是 1 ,则去除与这个项目相乘的常数。得到的结果就是大 O 阶。
使用大 O 的渐进表示法以后, Func1 的时间复杂度为:
通过上面我们会发现大 O 的渐进表示法 去掉了那些对结果影响不大的项 ,简洁明了的表示出了执
行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数 ( 上界 )
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数 ( 下界 )
例如:在一个长度为 N 数组中搜索一个数据 x
最好情况: 1 次找到
最坏情况: N 次找到
平均情况: N/2 次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)
2.3 常见时间复杂度计算举例
实例 1
// 计算Func2的时间复杂度?
void Func2(int N)
{
 int count = 0;
 for (int k = 0; k < 2 * N ; ++ k)
 {
 ++count;
 }
 int M = 10;
 while (M--)
 {
 ++count;
 }
 printf("%d\n", count);
}

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
 assert(a);
 int begin = 0;
 int end = n;
 while (begin < end)
 {
 int mid = begin + ((end-begin)>>1);
 if (a[mid] < x)
 begin = mid+1;
 else if (a[mid] > x)
 end = mid;
 else
 return mid;
 }
 return -1;
}

实例答案及分析:
1. 实例 1 基本操作执行了 2N+10 次,通过推导大 O 阶方法知道,时间复杂度为 O(N)
2. 实例 2 基本操作执行了 M+N 次,有两个未知数 M N ,时间复杂度为 O(N+M)
3. 实例 3 基本操作执行了 10 次,通过推导大 O 阶方法,时间复杂度为 O(1)
4. 实例 4 基本操作执行最好 1 次,最坏 N 次,时间复杂度一般看最坏,时间复杂度为 O(N)
5. 实例 5 基本操作执行最好 N 次,最坏执行了 (N*(N+1)/2 次,通过推导大 O 阶方法 + 时间复杂度
一般看最坏,时间复杂度为 O(N^2)
6. 实例 6 基本操作执行最好 1 次,最坏 O(logN) 次,时间复杂度为 O(logN) ps logN 在算法分析
中表示是底数为 2 ,对数为 N 。有些地方会写成 lgN 。(建议通过折纸查找的方式讲解 logN
怎么计算出来的)
7. 实例 7 通过计算分析发现基本操作递归了 N 次,时间复杂度为 O(N)
复杂度对比:
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

2.2.常见空间复杂度的计算

空间复杂度是对一个算法在运行过程中 临时占用存储空间大小的量度 。空间复杂度不是程序占用
了多少 bytes 的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计
算规则基本跟实践复杂度类似,也使用 O 渐进表示法
实例 1
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

实例2

// 计算Fibonacci的空间复杂度?
long long* Fibonacci(size_t n)
{
     if(n==0)
          return NULL;
     long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
  fibArray[0] = 0;
     fibArray[1] = 1;
     for (int i = 2; i <= n ; ++i)
     {
           fibArray[i ] = fibArray[ i - 1] + fibArray [i - 2];
     }
     return fibArray ;
}

实例3

// 计算阶乘递归Factorial的空间复杂度?
long long Factorial(size_t N)
{
 return N < 2 ? N : Factorial(N-1)*N;
}
实例答案及分析:
1. 实例 1 使用了常数个额外空间,所以空间复杂度为 O(1)
2. 实例 2 动态开辟了 N 个空间,空间复杂度为 O(N)
3. 实例 3 递归调用了 N 次,开辟了 N 个栈帧,每个栈帧使用了常数个空间。空间复杂度为 O(N)

补充一些算法题:

O(1)时间复杂度:指的是算法的运行次数和这个问题的规模的关系不大,也就是算法只执行固定次数

O(n)时间复杂度:指的是算法运行次数和规模呈现线性关系,其实这个大o表示法,算的是一个人大体值,也就是说O(1/100*n)和O(100*n),虽然都是O(n),但是还是有差距的

O(n^2)时间复杂度:一般是循环套循环来的

O(1ogn)时间复杂度:

O(nm)时间复杂度:

O(n+m)时间复杂度:不能确定n和m谁影响规模

总结一下:时间复杂度其实算的就是运行次数,空间复杂度算的就是所以变量加起来的值




完!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值