西瓜书
文章平均质量分 62
青藤-amao
这个作者很懒,什么都没留下…
展开
-
西瓜书阅读笔记-2
1、错误率&精度分类错误的样本数占样本总数的比例精度=(1-错误率)×100%2、误差学习器的实际预测输出和样本的真是输出之间的差异称为误差训练集上的误差:训练误差/经验误差新样本上的误差:泛化误差3、过拟合&欠拟合过拟合:一般为学习能力过强,把一些训练样本的特点当成所有样本的一般性质,泛化能力差——无法彻底避免(P≠NP)欠拟合:无法很好根据训练样本学习到潜在样本的一般规律4、模型选择理想:评估候选模型的泛化误差,选择最小的现实:无法直接获得泛化误差5、如何评估?原创 2021-04-22 19:03:10 · 177 阅读 · 0 评论 -
西瓜书阅读笔记-1
1、机器学习数据集(数据集中每一个样本有n个属性构成n维样本空间,每个样本点对应一个特征向量)->学习算法(训练集)->模型(分类/回归/聚类)->预测(测试集/泛化能力)一个程序利用经验E在任务T上获得了性能P的改善,则关于任务T和性能P,该程序对经验E进行了学习。2、分类&回归&聚类分类:二分类,多分类 ——离散回归:实数集 ——连续(分类回归属于有监督学习,分类和回归的界限是不明确的)聚类:无监督学习3、泛化能力模型适用于新样本的能力,一般而言,对原创 2021-04-19 13:50:30 · 140 阅读 · 0 评论