牛客周赛 Round 59(思维、构造、数论)

牛客周赛 Round 59(思维、构造、数论)


E题,对于对角线的处理,常用。

F题,范德蒙恒等式推论的应用。


A. TD

简单数学题。

#include<bits/stdc++.h>

using namespace std;

int main(){
	
	double n, m;
	cin >> n >> m;
	
	double res = n / m;
	printf("%.10lf", res); // 注意精度
	
	return 0;
}

B. 你好,这里是牛客竞赛

判断四个模式串是否为输入字符串的前缀即可。

#include<bits/stdc++.h>

using namespace std;

bool is_prefix(const string& A, const string& B){	// 判断B是否为A的前缀
	return A.find(B) == 0;		// str.find() 返回首次匹配的下标,没找到返回str.npos
}

int main(){
	
	map<string, string> mp;
	mp["https://www.nowcoder.com"] = "Nowcoder";
	mp["www.nowcoder.com"] = "Nowcoder";
	mp["https://ac.nowcoder.com"] = "Ac";
	mp["ac.nowcoder.com"] = "Ac";
	
	int ncase;
	cin >> ncase;
	while(ncase--){
		string s;
		cin >> s;
		int is_find = 0;
		for(auto x : mp){
			if(is_prefix(s, x.first)){
				is_find = 1;
				cout << x.second << endl;
				break; 
			}
		}
		if(!is_find) cout << "No" << endl;
	}
	
	return 0;
}

C. 逆序数(思维)

通过简单思考,一个序列A,任选两个元素,共有 |A| * (|A|-1)/ 2 种选择。(|A| 表示A序列中元素的个数)

对于任选的Ai 和 Aj,要么其在 A 中为逆序对,要么在 A’ 中为逆序对。(设A序列的逆序序列为A’)

综上,A 和 A’ 中逆序对的和为 |A| * (|A|-1)/ 2。

在已知A的逆序对个数和元素个数时,可以计算出A’ 中逆序对的个数。

#include<bits/stdc++.h>
#define ll long long
using namespace std;


int main(){
	
	ll n, k;
	cin >> n >> k;
	ll res = n * (n-1) / 2 - k; // 注意数据范围
	cout << res << endl;
	
	return 0;
}

D. 构造mex(构造)

一点点细节的构造题。

根据 k 与 n 的大小关系进行了分类,具体看代码吧。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
 
void print_yes(int k, int is_end){
    cout << "YES" << endl;
    for(int i = 0; i < k; i++){
        cout << (i == 0 ? "" : " ") << i;
    }
    if(is_end) cout << "\n";
}
 
int main(){
     
    int ncase;
    cin >> ncase;
     
    while(ncase--){
        ll s, n, k;
        cin >> s >> n >> k;
        if(k == 0){
            if(s >= n){
                cout << "YES" << endl; 
                int sum = s - n;
                for(int i = 1; i < n; i++) cout << "1 ";
                cout << sum + 1 << endl;
            }
            else cout << "NO" << endl;
        }
        else if(k == 1 && s == 1) cout << "NO" << endl;
        else if(k > n) cout << "NO" << endl;
        else if(k == n){
            ll sum = k * (k-1) / 2;
            if(sum == s) print_yes(k, 1);
            else cout << "NO" << endl;
        }
        else if(k+1 == n){
            ll sum = k * (k-1) / 2;
            if(sum + k != s && s >= sum){
                print_yes(k, 0);
                cout << " " << s - sum << endl;
            }
            else cout << "NO" << endl;
        }
        else {	// 这是一种普遍的构造方法,上边的分类,均为当前分支不适配的特殊情况。
            ll sum = k * (k-1) / 2;
            if(sum > s) cout << "NO" << endl;
            else if(sum + k != s){
                print_yes(k, 0);
                cout << " " << s - sum;
                for(int i = k+2; i <= n; i++) cout << " " << 0;
                cout << endl;
            }
            else{
                print_yes(k, 0);
                cout << " " << s - sum - 1 << " 1";
                for(int i = k+3; i <= n; i++) cout << " " << 0;
                cout << endl;
            }
        }
    }
     
    return 0;
}

E. 小红的X型矩阵

操作二等价于:可以在保证元素相对位置的基础上,把任意点放在矩阵中间。

X形矩阵的形状与 n 的奇偶有关。

  • 主对角线:左上到右下;副对角线:右上到左下。

  • 任意点(x, y) 所在的主对角线上的点都满足:(x-y+n) % n

  • 任意点(x, y) 所在的福对角线上的点都满足:(x+y) % n

当 n为奇数时,任意点(x,y)需要的操作一的数量为:对角线上 0 的个数 + (全部 1 的个数为 X - 对角线上 1 的个数)

当 n为偶数时,任意点(x,y)需要的操作一的数量为:对角线上 0 的个数 + (全部 1 的个数为 X - 对角线上 1 的个数)

#include<bits/stdc++.h>

using namespace std;

const int maxn = 1005;
int a[maxn][maxn];
int z[maxn], f[maxn];

int main(){
	
	int n;
	cin >> n;
	int sum_1 = 0;
	for(int i = 0; i < n; i++){
		for(int j = 0; j < n; j++){
			cin >> a[i][j];
			z[(i-j+n)%n] += a[i][j];	 // 主对角线 1的个数 
			f[(i+j)%n] += a[i][j];  	 // 副对角线 1的个数 
			sum_1 += a[i][j];
		}
	}
	
	int res = n * n;
	for(int i = 0; i < n; i++){
		for(int j = 0; j < n; j++){
			int pos_z = (i-j+n) % n, pos_f = (i+j) % n, tmp, d_0, d_1;
			if(n % 2 == 0){
				pos_f = (pos_f + 1) % n; 			// 偶数时,副对角线下移一格 
				d_1 = z[pos_z] + f[pos_f];			// 对角线上 1 的个数 
				d_0 = 2*n - d_1;	// 对角线上 0 的个数 
			}
			else{
				// 如果是奇数,(i,j) 会被重复统计
				d_1 = z[pos_z] + f[pos_f] - a[i][j];
				d_0 = 2*n-1 - d_1;
			}
			tmp = d_0 + (sum_1 - d_1);
			res = min(res, tmp); 
//			cout << i << " " << j << " " << res << " " << tmp << endl;
		}
	}
	cout << res << endl;
	
	return 0;
}


/*

	0 1 2 3 4
0	0 4 3 2 1 
1	1 0 4 3 2
2	2 1 0 4 3
3	3 2 1 0 4
4	4 3 2 1 0


*/

F. 小红的数组回文值(数论、范德蒙恒等式)

思路不是很复杂,任选两个元素 ai 与 aj ,考虑这两个元素对答案的贡献。

  • 当 ai == aj 时,不需要操作,贡献为零。

  • 当 ai != aj 时,需要操作,贡献为 ai 与 aj 在对称位置的子序列的个数

在这里插入图片描述

如上图,要保证 ai 与 aj 在对称位置,集合A和集合C贡献的元素个数必须相等。集合B对对称性没有影响 ,可自行枚举。

  • 集合B对子序列个数的贡献为 2|B|,其中 |B| 表示集合B中元素的个数。

  • 集合A和集合C对子序列个数的贡献为 ∑ i = 0 m i n ( ∣ A ∣ , ∣ C ∣ ) C ( i , ∣ A ∣ ) ∗ C ( i , ∣ C ∣ ) \sum_{i=0}^{min(|A|, |C|)} {C(i,|A|) * C(i, |C|)} i=0min(A,C)C(i,A)C(i,C)

综上,ai 与 aj 在对称位置的子序列的个数 = 2|B| * ∑ i = 0 m i n ( ∣ A ∣ , ∣ C ∣ ) C ( i , ∣ A ∣ ) ∗ C ( i , ∣ C ∣ ) \sum_{i=0}^{min(|A|, |C|)} {C(i,|A|) * C(i, |C|)} i=0min(A,C)C(i,A)C(i,C) 。枚举所有的 ai 与 aj 的组合,求和即可得出答案。

但是,在枚举时,会发现时间复杂度是O(n^3), 需要优化 ∑ i = 0 m i n ( ∣ A ∣ , ∣ C ∣ ) C ( i , ∣ A ∣ ) ∗ C ( i , ∣ C ∣ ) \sum_{i=0}^{min(|A|, |C|)} {C(i,|A|) * C(i, |C|)} i=0min(A,C)C(i,A)C(i,C),这里就需要用到范德蒙恒等式

范德蒙恒等式推论: ∑ i = 0 m i n ( ∣ A ∣ , ∣ C ∣ ) C ( i , ∣ A ∣ ) ∗ C ( i , ∣ C ∣ ) = C ( m i n ( ∣ A ∣ , ∣ C ∣ ) , ∣ A ∣ + ∣ C ∣ ) \sum_{i=0}^{min(|A|, |C|)} {C(i,|A|) * C(i, |C|)} = C(min(|A|, |C|), |A| + |C|) i=0min(A,C)C(i,A)C(i,C)=C(min(A,C),A+C)

给一个学习的博客:范德蒙德卷积 - Gensokyo Algorithm Research Institute (enonya.github.io)

#include<bits/stdc++.h>
#define ll long long
using namespace std;

const int maxn = 2000 + 10;
const ll mod = 1e9 + 7;

ll C[maxn][maxn], P[maxn][maxn];
ll p[maxn];
int a[maxn];

void init(){
	// 预处理组合数
	C[0][0] = 1;
	for(int i = 1; i < maxn; i++){
		for(int j = 0; j <= i; j++){
			C[i][j] = C[i-1][j];
			if(j-1 >= 0) C[i][j] += C[i-1][j-1];
			C[i][j] %= mod;
		}
	}
	// 预处理2的整次幂
	p[0] = 1;
	for(int i = 1; i <= 2000; i++) p[i] = p[i-1] * 2 % mod;
}

ll f(int a, int b){ // 当时一个愚蠢的写法,忽略掉这个函数名
	if(a > b) swap(a, b);
	return C[a+b][a];
}

int main(){
	
	init();
	
	int n;
	cin >> n;
	for(int i = 1; i <= n; i++) cin >> a[i];
	
	ll res = 0;
	for(int i = 1; i <= n; i++){
		for(int j = i+1; j <= n; j++){
			if(a[i] != a[j]){
				res += f(i-1, n-j) * p[j-i-1] % mod;
				res %= mod;				
			}
		}
	}
	
	cout << res << endl;
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值