文献阅读
文章平均质量分 79
小李AI飞刀^_^
平平无奇的李老师一枚
展开
-
【论文阅读】Concurrent Segmentation and Object Detection CNNs for Aircraft Detection and Identification
这篇论文来自preligens,同时采用了分割和检测算法来实现遥感影像飞机的检测和识别,创造性的将分割和检测两类算法进行了融合,提高了检测识别的精度和效率。一、引言二、方法模型各部分选择的理论基础:(1)改变训练模式会引起模型内部特征提取方式的改变;(2)分割模型非常有效,但是在目标的分割和识别中效果较差;(3)在高分辨率的卫星影像中,飞机的尺寸是有限的。1. 分割的CNN网络分割网络实现的目标:(1)检测飞机(无需识别);(2)获得高的recall(尤其是在位置信息上);(3)鲁棒性强原创 2021-12-26 10:02:58 · 1253 阅读 · 1 评论 -
【论文阅读】Oriented R-CNN for Object Detection
oriented-RPN用于生成高质量的带方向的候选框,oriented R-CNN head用于优化oriented RoIs并对其进行识别原创 2021-12-17 11:24:19 · 2804 阅读 · 0 评论 -
【论文】RRPN:Arbitrary-Oriented Scene Text Detection
一、引言(1)主要内容本文介绍了一个基于旋转的方法和一个端对端的任意方向的文本检测系统,由于结合了方向信息,该系统可以生成任意方向的候选框。RRPN被用来生成包含文本角度信息的倾斜候选框,这个角度信息随后会被用于边框回归。 旋转RoI(RRoI)可以将任意方向的候选框投影到特征图上。 使用一个两层网络作为最终的文本/背景分类器。(2)创新点使用基于区域建议的方法预测文本的方向信息,并加入了新的结构,如RRoI池化层和旋转候选框的学习。 使用新的策略对任意方向的区域候选...原创 2021-11-26 12:27:33 · 1839 阅读 · 0 评论 -
【论文】R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection
【总结】以Faster R-CNN为基础:①使用区域建议生成网络RPN生成包围文本的水平边界框;② 对预测出的每一个水平边界框,提取其不同池化尺寸的池化特征,同时利用聚合特征预测文本/非文本得分、水平边界框和最小倾斜框;③利用倾斜非极大值抑制NMS获得最终结果。...原创 2021-11-26 12:08:24 · 2394 阅读 · 0 评论 -
【论文】ReDet:A Rotation-equivariant Detector for Aerial Object Detection
源码地址:GitHub - csuhan/ReDet: Official code of the paper "ReDet: A Rotation-equivariant Detector fyor Aerial Object Detection" (CVPR 2021)摘要1. 针对的问题航天影像的目标分布方向是任意的,需要更多的参数解码方向信息 普通的CNN不能明确地对方向的变化进行建模,需要大量的旋转增强数据来训练检测器。2. 本文研究内容提出了一个ReDet检测器,明确...原创 2021-11-16 19:24:45 · 2531 阅读 · 0 评论 -
【论文】DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 2.读 摘要提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、引言示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。二、算法1.引入库代码如下(示例):iport numpy a..原创 2021-11-15 21:07:06 · 3055 阅读 · 0 评论 -
【论文】Learning RoI Transformer for Oriented Object Detection in Aerial Images
RoI Transformer: 将空间转换应用在RoIs上,并通过标注旋转框,监督学习得到转换参数。RoI Transformer是轻量级的。Introduction1. 水平框检测会造成边界框和目标的不一致性,尤其是当目标密集分布时。2. 由于航空影像目标方向的多样性,使用有限方向的RRoIs很难与所有的目标都正确匹配,并且多方向的RRoIs还会造成计算的高度复杂性。3. 空间变换、形变卷积和RoI池化常被用来处理几何变形,并且不涉及标注的旋转边界框。4. 在航空影像中,提取.原创 2021-11-12 17:19:17 · 4417 阅读 · 1 评论 -
DOTA数据集介绍(论文A Large-scale Dataset for Object Detection in Aerial Images)
HBB:horizontal Bounding Boxes水平边界框OBB:oriented Bounding Boxes倾斜边界框1 introduction(1) 航空影像目标检测与传统目标检测的区别航空影像目标尺寸差异很大 航空影像中很多小目标密集分布,且类别不均衡 航空影像中的目标可能是任意方向的 除此之外,数据集的问题也是航空影像目标检测面临的挑战之一。(2) 主要内容本研究介绍了一个大型的目标检测数据集。该数据集包含了286张来自不同传感器和平台的航空影像...原创 2021-11-11 14:30:18 · 11164 阅读 · 0 评论 -
【论文】YOLOX: Exceeding YOLO Series in 2021
1. 引言近两年,大多数算法聚焦于anchor-free的检测器、先进的标签分配策略以及端对端(无NMS)的检测。本文旨在通过经验性的改进将这些技术应用在YOLO算法上。 以YOLOv3 (YOLOv3-SPP)为起点,进行对比实验2. YOLOX2.1 YOLOX-DarkNet53(1)基准模型YOLOv3-DarkNet53与原始设置相比,增加了EMA权重更新,cosine 学习率,IoU损失和IoU-aware 分支。 只进行了随机水平翻转、colorJitter,以及多尺原创 2021-11-10 08:46:48 · 467 阅读 · 0 评论