#Z1243. 完美数(类筛选法)

题目描述

一个数是完美的,仅当它等于它的因数中比它小的所有数之和。

例如:28=1+2+4+7+14,所以 28 是完美的。

由此我们可以定义一个数的不完美值 F(N),代表 N 和比 N 小的所有 N 的因数之和的差的绝对值。

例如:F(6)=|6-1-2-3|=0,

F(11)=|11-1|=10,

F(24)=|24-1-2-3-4-6-8-12|=|-12|=12F。

现在给出两个正整数 A 和 B,请你求出 F(A)+F(A+1)+...+F(B)。

输入格式

一行,两个整数 A 和 B,含义如上。

输出格式

一行,一个整数,表示 F(A)+F(A+1)+...+F(B)F(A)+F(A+1)+...+F(B)。

样例 #1

样例输入 #1

1 9

样例输出 #1

21

样例 #2

样例输入 #2

24 24

样例输出 #2

12

提示

【样例解释 #1】

F(1)+...+F(9)=1+1+2+1+4+0+6+1+5=21。

【数据范围】

对于 100% 的数据,1≤A,B≤ 10^7。

题解

这一题我们可以用类筛选法(类筛选法是指在本题中求出某一段每一个数的所有因数)来做。怎么做呢?我们可以用一个数组f来存储1~b中的每一个数的因数和,因为一个合数可以分解为有限个质数的乘积,设一个数i(从1到根号n)的j倍为n,所以就以知道i和j一定是n的约数,若i=j,那么 f[i*j]=f[i*j]+i 就行了,否则f[i*j]=f[i*j]+i+j。

代码

#include<bits/stdc++.h>
using namespace std;
long long a,b,s[10000001];
int main()
{
	cin>>a>>b;
	for(int i=1;i*i<=b;i++)
	{
		for(int j=i;j*i<=b;j++)
		{
			if(i!=j)
			{
				s[i*j]=s[i*j]+i+j;
			}
			else
			{
				s[i*j]=s[i*j]+i;
			}
		}
	}
	long long ans=0;
	for(int i=a;i<=b;i++)
	{
		ans=ans+abs(2*i-s[i]);
	}
	cout<<ans;
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值