题目描述
一个数是完美的,仅当它等于它的因数中比它小的所有数之和。
例如:28=1+2+4+7+14,所以 28 是完美的。
由此我们可以定义一个数的不完美值 F(N),代表 N 和比 N 小的所有 N 的因数之和的差的绝对值。
例如:F(6)=|6-1-2-3|=0,
F(11)=|11-1|=10,
F(24)=|24-1-2-3-4-6-8-12|=|-12|=12F。
现在给出两个正整数 A 和 B,请你求出 F(A)+F(A+1)+...+F(B)。
输入格式
一行,两个整数 A 和 B,含义如上。
输出格式
一行,一个整数,表示 F(A)+F(A+1)+...+F(B)F(A)+F(A+1)+...+F(B)。
样例 #1
样例输入 #1
1 9
样例输出 #1
21
样例 #2
样例输入 #2
24 24
样例输出 #2
12
提示
【样例解释 #1】
F(1)+...+F(9)=1+1+2+1+4+0+6+1+5=21。
【数据范围】
对于 100% 的数据,1≤A,B≤ 10^7。
题解
这一题我们可以用类筛选法(类筛选法是指在本题中求出某一段每一个数的所有因数)来做。怎么做呢?我们可以用一个数组f来存储1~b中的每一个数的因数和,因为一个合数可以分解为有限个质数的乘积,设一个数i(从1到根号n)的j倍为n,所以就以知道i和j一定是n的约数,若i=j,那么 f[i*j]=f[i*j]+i 就行了,否则f[i*j]=f[i*j]+i+j。
代码
#include<bits/stdc++.h>
using namespace std;
long long a,b,s[10000001];
int main()
{
cin>>a>>b;
for(int i=1;i*i<=b;i++)
{
for(int j=i;j*i<=b;j++)
{
if(i!=j)
{
s[i*j]=s[i*j]+i+j;
}
else
{
s[i*j]=s[i*j]+i;
}
}
}
long long ans=0;
for(int i=a;i<=b;i++)
{
ans=ans+abs(2*i-s[i]);
}
cout<<ans;
return 0;
}