【原创】一文搞懂原码,反码,补码的概念

一、引入

众所周知,我们经常用的电脑(计算机)使用的是二进制补码来存储信息数字的。二进制补码?什么是二进制补码?本文就来科普一下二进制的原码,反码,补码的概念吧!

二、原码,反码,补码的概念

请注意,本文用的都是 八位二进制来表示(范围-128~127)。

二进制原码

二进制原码的概念:最高位作为符号位(0是负,1是正),剩下的七位就是这个数的绝对值的二进制

+1

0000 0001

-1

1000 0001

-9

1000 1001

二进制反码

二进制反码的概念:正数的反码就是其原码,负数的反码是其原码除符号位取反(1变0,0变1)。

数字

二进制原码

二进制反码

+1

0000 0001

0000 0001

-1

1000 0001

1111 1110

-12

1000 1100

1111 0011

二进制补码

二进制补码的概念:正数的补码就是其原码,负数的补码是其反码+1。

数字

二进制原码

二进制反码

二进制补码

+1

0000 0001

0000 0001

0000 0001

-1

1000 0001

1111 1110

1111 1111

-9

1000 1001

1111 0110

1111 0111

三、用代码输出一个数N的原码,反码和补码

那我们怎么样用代码输出一个数N的原码,反码和补码呢。(N N不等于0)。

首先,我们要特判一下N是正数还是负数(如果是负数,就标记一下)。

然后,将N的绝对值搞成二进制数,同时输出N的原码(要特判一下二进制数的位数)。

在判断如果是正数,输出N的原码

如果是负数,再将N的原码除符号位取反输出(要特判一下正负数)。

最后在判断如果是正数,输出N的原码

如果是负数,再将N的补码+1输出(要注意一下逢二进一,要特判一下正负数)。

#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,aa[10001],u,a[10001],b[10001],c[10001];
bool cmp=0;
signed main()
{
    cin>>n;
    if(n<0)cmp=1;
    int nn=abs(n);
    while(nn>0)    //将n转为二进制数 
    {
        aa[++u]=nn%2;
        nn/=2;
    }
    int t=7-u;
    for(int i=1;i<=u;i++)
    {
        a[u-i+1]=aa[i];
    }
    if(t!=0)
    {
        for(int i=1;i<=u;i++)
        {
            a[i+t]=a[i];
            a[i]=0;
        }
        u=7;
    }
    if(cmp==0)cout<<0;
    else cout<<1;
    for(int i=1;i<=u;i++)    //输出n的原码 
    {
        cout<<a[i];
        if(i==3)cout<<' ';
    }
    cout<<endl;
    if(cmp==0)
    {
        for(int i=1;i<=u;i++)b[i]=a[i];
    }
    else
    {
        for(int i=1;i<=u;i++)
        {
            if(a[i]==1)b[i]=0;
            else b[i]=1;
        }
    }
    if(cmp==0)cout<<0;
    else cout<<1;
    for(int i=1;i<=u;i++)    //输出n的反码 
    {
        cout<<b[i];
        if(i==3)cout<<' ';
    }
    cout<<endl;
    for(int i=1;i<=u;i++)
    {
        c[i]=b[i];
    }
    if(cmp==1)
    {
        c[u]++;
        int sum=u;
        while(c[sum]==2 && sum>=1)
        {
            c[sum]=0;
            c[--sum]++;
        }
    }
    if(cmp==0)cout<<0;
    else cout<<1;
    for(int i=1;i<=u;i++)    //输出n的补码 
    {
        cout<<c[i];
        if(i==3)cout<<' ';
    }
    return 0;
}

演示:

本文到这里就结束了,如果觉得写得好的话欢迎点赞+收藏+评论!

首先,我们需要了解如何将十进制转换成二进制的原码反码补码。 1. **原码**:正数直接表示,负数则最高位为1(对于有符号整数)。 - **95 (十进制)**: 原码 = 000001010101(因为95在8位内,不足8位补0) - **-131 (十进制)**: 原码 = 111110100011 (负数最高位为1) 2. **反码**:对原码取反,然后加1(对于有符号整数)。负数的反码是除符号位外全变1。 - **95 (十进制)**: 反码 = 111110101010 (+95的反码) - **-131 (十进制)**: 反码 = 000001011100 (-131的反码) 3. **补码**:也是对原码取反,然后加1,但对于负数,有一个特殊情况:零的补码等于其本身。 - **95 (十进制)**: 补码 = 111110101010 (+95的补码,无需调整) - **-131 (十进制)**: 补码 = 000001011101 (-131的补码,注意最后一位由1变为0) 4. **浮点数的原码反码补码**: - **0.125 (十进制)**: 由于是小数,通常会采用偏移二进制表示法,即在最高位后面跟上实际值的二进制。0.125 = 1 / 8 = 0.00011001... - 原码 = 000000000000011001000... (保留足够位数) - 反码 = 11111111111110011111100... (先取反再加1) - 补码 = 11111111111110011111100... (小数部分不变,不需要加1) - **-0.875 (十进制)**: 同样是小数,可以将其转化为二进制形式 -0.125 * 8 = -1 = -1000... - 原码 = 100000000000001110000... (带符号,注意最左一位) - 反码 = 01111111111111000111100... (先取反再加1) - 补码 = 01111111111111000111100... (小数部分不变,不需要加1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值