CCF CSP[201703-5] 引水入城(dij 模拟最大流)

10 篇文章 0 订阅

思路:题目是一个最大流问题,可以转化为最短路问题。

#include<iostream>
#include<queue>
#define N 5050
#include<string.h>
#include<algorithm>
#include<bits/stdc++.h>
using namespace std;
int n,m;
int a[N][N],b[N][N]; 
int ed;
int ed_x[N],ed_y[N],ed_w[N];
bool done[N][N];
long long d[N][N];
struct node{
	int x,y;
	long long d;
	node(int x=0,int y=0,long long d=0){
		this->x=x;
		this->y=y;
		this->d=d;
	}
	bool operator <(const node &rhs)const{
		return d>rhs.d;
	}
}; 
priority_queue<node> Q;
void read(){
	int A,B,Q,XI;
	scanf("%d%d%d%d%d%d",&n,&m,&A,&B,&Q,&XI);
	for (int i=1;i<n;i++)
    for (int j=1;j<=m;j++){
       XI=(1ll*A*XI+B)%Q;
       a[i][j]=XI;
    }
  
    for (int i=2;i<=n-1;i++)
    for (int j=1;j<m;j++){
       XI=(1ll*A*XI+B)%Q;
       b[i][j]=XI;
    }	
}

void getEdge(int x,int y){ //从(x,y)出发点连边
  ed=0;
  if (x==0){    //起始或终点
     if (y==0){ //s
        for (int i=1;i<n;i++){
          ed++;
          ed_x[ed]=i;
          ed_y[ed]=1;
          ed_w[ed]=a[i][1];
        }
     }
  }else{  //格子节点
     //右
     ed++;
     if (y==m-1){//通向汇点t
       ed_x[ed]=0;ed_y[ed]=1;ed_w[ed]=a[x][m];
     }else{
       ed_x[ed]=x;ed_y[ed]=y+1;ed_w[ed]=a[x][y+1];
     }
     //左
     if (y>1){
       ed++;
       ed_x[ed]=x;ed_y[ed]=y-1;ed_w[ed]=a[x][y];
     }
     //下
     if (x<n-1){
       ed++;
       ed_x[ed]=x+1;ed_y[ed]=y;ed_w[ed]=b[x+1][y];
     }
     //上
     if (x>1){
       ed++;
       ed_x[ed]=x-1;ed_y[ed]=y;ed_w[ed]=b[x][y];
     }
  }
  
}

long long solve(){
  memset(d,127,sizeof(d));
  d[0][0]=0;
  memset(done,0,sizeof(done));
  Q.push(node(0,0,0));
  while (!Q.empty()){
    node nd=Q.top();Q.pop();
    if (nd.x==0 && nd.y==1) return nd.d;
    if (done[nd.x][nd.y])continue;
    done[nd.x][nd.y]=true;
    d[nd.x][nd.y]=nd.d;
    getEdge(nd.x,nd.y);
    for (int i=1;i<=ed;i++){
      int x=ed_x[i];
      int y=ed_y[i];
      int w=ed_w[i];
      if (d[x][y]>d[nd.x][nd.y]+w){
        d[x][y]=d[nd.x][nd.y]+w;
        Q.push(node(x,y,d[x][y]));
      }
    }
  }
  return 0;
}

int main(){
	read();
	cout<<solve()<<endl;
	return 0;
}

转载这位大神的:https://blog.csdn.net/vcvycy/article/details/78236395

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值