- 博客(7)
- 收藏
- 关注
原创 大数据,数据分析场景分析。
工作和学习中遇到很多问题,其实都蛮有代表性的。先记录下,然后找个愉快的日子,都补充完整了。大数据中数据分析中经常会因为不同的场景产生复杂的数据问题。问题1.比如目前有数据库服务器的性能已经满足业务需求,但对大数据处理超出了内存的限制,该怎么办?问题2.来计算水流,图像问题数据量很大,运算量很大,该怎么办?问题3.等等目前用的比较成熟的思路。1.从大数据抽样2
2015-05-26 16:00:11 2033
原创 大数据下的数据问题-从很远很远的历史开始谈未来,谈谈阿里云ODPS的SQL复杂度,谈设计新的数据库,最终?
深夜爱学习。文章要谈大数据下的数据问题-从很远很远的历史开始谈未来,谈谈阿里云ODPS的SQL复杂度,mapreduce,谈设计新的数据库,人工智能,。。。。好多东西。其实写的时候也不知道本文的目的是啥?分析SQL?分析数据库性能?设计新的数据库? 连接池,负载均衡,并行查询?先写着吧,把自己知道的都先写下来。一个近似完美的数据库的概念应该是:能够调用和存储程序的数据库(措
2015-05-23 03:40:05 782
原创 思考,未来的程序员
现在的程序员都在写程序实现功能模块。未来的程序员都在努力让程序去写程序。程序员要下岗了,倒是挺有意思的现象,AI让梦想走的更远。
2015-05-22 20:24:25 614
原创 思考《奇点临近》
一点观点不谋而合: 如果美国是发散的国家,中国是收敛的国家那么,什么东西不可能无限发散,总归要收敛。这些发散和收敛的想法来自于文化,这些效应将是未来决策中非常非常重要的一点,不管是做互联网还是国际投资还是各方面的竞争,请都考虑下这个问题。虽然想法的产生很简单,但对这个想法的理解和深入会随着年龄和经验不断加深,切记。那么:根据中国几千年文化的而产生的行为,一
2015-05-22 20:15:45 795
原创 别在问数学、计算机,哪个更适合机器学习!
好多次都曾怀疑,一个数学功底不好的人怎么把Machine learning学好。于是,又翻开线性代数和概率论,看的头昏眼花。不曾想,数学的朋友们在写代码,用工具的时候实了几十次都出run不出来么? 所以我不会气馁。 深深的明白了ML,DM的子课程是计算机+数学(统计)。既然学计算机的,先把例子代码跑出来、看代码再分析数学,学习它,不求能导公式,只求会举一反三。就这样熬过了我ML
2015-05-07 03:27:22 471
原创 mathine learning,开始kaggle
期末作业,要在kaggle上完成Digit Recognizerhttps://www.kaggle.com/c/digit-recognizer毫无思路,但是这东西比较有意思。我想:1.想做一个程序把所有坐标对应打印出来,MFC,JAVA哪个比较好?2.查看了下解决手写数字识别的几个思路, SVM,random forest algorithm(随机森林) 用py
2013-12-12 10:56:26 911 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人