关系聚类 - SAHN 模型
1. 特征向量算法与关系聚类
目前讨论的特征向量算法均为批量方法,即在每次迭代中“一次性查看所有数据”。因此,批量方法往往会忽略数据呈现顺序的排列,通常对 $X_{30}$ 或 $\pi(X_{30})$ 应用时会找到相同的聚类。不过,由于批量算法在不同数据集上的不同初始化可能会使其进入不同的局部终止状态。
与之相反,使用关系聚类算法(如单链接)在从 $X_{30}$ 提取的六个相异关系(即图 8.3 中描绘的六个不同距离矩阵)中寻找聚类,可能会对 $X_{30}$ 产生非常不同的解释。
2. SAHN 模型与算法
2.1 聚类方法概述
- 凝聚式算法 :从每个对象自成一个单例聚类($c = n$)开始,随后合并相似的聚类,直到过程终止于一个单一聚类($c = 1$)。
- 分裂式算法 :处理过程相反,从所有点在一个单一聚类($c = 1$)开始,然后根据某种规则分裂聚类,直到每个对象最终自成一个单例聚类($c = n$)。
2.2 SAHN 模型核心
SAHN 模型的核心是度量空间中有限、清晰子集 $A$ 和 $B$ 之间的集合距离 $\delta_{SAHN}(A, B)$。Lance 和 Williams(1967)给出了 SAHN 模型的一般公式:
$\delta_{SAHN}(WV, A) = \alpha_w\delta_{SAHN}(W, A) + \alpha_v\delta_{SAHN}(V, A) + \beta